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1 Overview

The tvreg package applies total variation (TV) regularization [25] to perform image denoising, de-
convolution, and inpainting. Three different noise models are supported: additive white Gaussian
noise (traditional L2 data fidelity), Laplace noise (L1 data fidelity), and Poisson. The implemen-
tation solves the general TV restoration problem

min
u∈BV (Ω)

∫
Ω
|∇u(x)| dx+

∫
Ω
λ(x)F

(
Ku(x), f(x)

)
dx

to perform denoising, deconvolution, and inpainting as special cases. It is efficiently solved using
the split Bregman method [17]. Also included is an efficient implementation of Chan-Vese two-
phase segmentation [8]. All functions support grayscale, color, and arbitrary multichannel images.

These are computationally demanding programs! Using them on large images
will consume a great deal of memory and may take a long time to complete. Be
cautious and experiment first with medium-sized images.

Get Started Quickly

1. Install the FFTW library (http://www.fftw.org). Windows users can download precom-
piled .dll files http://www.fftw.org/install/windows.html.

2. Compile the programs with GCC using make -f makefile.gcc or Microsoft Visual C++
using nmake -f makefile.vc. See section 7 for help.

3. Try the demos

tvdenoise demo Total variation denoising demo
tvdeconv demo Total variation deconvolution demo
tvinpaint demo Total variation inpainting demo
chanvese demo Chan-Vese segmentation demo

Get Started Quickly in MATLAB
Compiling is not required to use tvreg in MATLAB. Try the demos

tvdenoise demo Total variation denoising demo
tvdeconv demo Total variation deconvolution demo
tvinpaint demo Total variation inpainting demo
chanvese demo Chan-Vese segmentation demo

For improved performance, run the included script complex mex.m to compile the main compu-
tation routines as MEX functions. This requires that FFTW is installed, please see section 7.3.
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1.1 Changes in tvreg v2

The significant change in this version of tvreg is that it is now written entirely in ANSI C code.
It may be called from C/C++ programs and used as a standalone command line program. tvreg
may still be used from Matlab as a MEX-function. Additionally, some algorithmic improvements
have been made.

� Fix: Boundary handling is now consistently half-sample symmetric in all operations

� New: Spatially-varying fidelity weight λ(x)

� New: DCT-based solver for faster deconvolution with symmetric kernels

1.2 Notation

All integrals “
∫

Ω f(x) dx” are over two-dimensional sets Ω with points x in R2, and dx is the usual
Lebesgue measure on R2. We also sometimes refer to points with the notation (x, y) when it is
needed to refer to their coordinates.

The symbol ∗ is used to denote two-dimensional convolution, defined as

(f ∗ g)(x0) :=
∫

R2

f(x0 − x)g(x) dx =
∫

R2

f(x)g(x0 − x) dx.

If f is defined only on a rectangular subset of R2, then f is first extrapolated to R2 by its symmetric
even extension (similarly for g).

2 Command line program usage

The following describes how to perform image restoration and segmentation using the command
line programs tvrestore and chanvese. To obtain these programs, follow the C/C++ compiling
instructions in section 7.

The basic syntax for these programs is

tvrestore [param:value ...] 〈input〉 〈output〉
chanvese [param:value ...] 〈input〉 〈output〉

where 〈input〉 and 〈output〉 specify the file names of the input image f and the output image
u. These files should be Windows Bitmap BMP files, for example noisy.bmp. It is possible to
compile the programs to include support for JPEG, PNG, and TIFF images (see section 7). If
〈output〉 is not specified, then u is written to out.bmp.
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Text file format Some parameters require specifying a two-dimensional array. For these pa-
rameters, the array can be read from a text file or from the graylevel values of an image. To
specify an array using a text file, the file should be ASCII text of numeric values delimited by
whitespace and line breaks to indicate new rows. Blank lines or lines starting with # are ignored.
For example, this file represents a 7× 7 array.

# mykernel.txt: a 7x7 filter

0.0000 0.0002 0.0011 0.0018 0.0011 0.0002 0.0000

0.0002 0.0029 0.0131 0.0215 0.0131 0.0029 0.0002

0.0011 0.0131 0.0586 0.0965 0.0586 0.0131 0.0011

0.0018 0.0215 0.0965 0.1596 0.0965 0.0215 0.0018

0.0011 0.0131 0.0586 0.0965 0.0586 0.0131 0.0011

0.0002 0.0029 0.0131 0.0215 0.0131 0.0029 0.0002

0.0000 0.0002 0.0011 0.0018 0.0011 0.0002 0.0000

2.1 Image restoration

The command line program tvrestore performs TV-regularized image restoration by solving the
minimization problem

min
u∈BV (Ω)

∫
Ω
|∇u(x)| dx+

∫
Ω
λ(x)F

(
Ku(x), f(x)

)
dx

including denoising, deconvolution, and inpainting as special cases. The important options are

lambda:〈number〉 specify λ value
K:〈kernel〉 specify the blur K for deconvolution
D:〈domain〉 specify inpainting domain D

These options are described in detail below.

Color If the input f is a color image, then TV is replaced with vectorial TV

‖u‖VTV =
∫

Ω

( ∑
i∈channels

|∇ui(x)|2
)1/2

dx.

Compared to processing each channel independently, the advantage of vectorial TV is that it
forces the channels to stay aligned, which prevents false color artifacts near edges.

Denoising The problem of image noise removal or denoising is, given a noisy image f : Ω→ R,
to estimate the clean underlying image u. For (additive white) Gaussian noise, the degradation
model describing the relationship between f and u is

f = u+ η,

where η is i.i.d. zero-mean Gaussian distributed.
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The tvrestore program implements TV-regularized denoising:

tvrestore lambda:〈number〉 f.bmp u.bmp

The option lambda:〈number〉 is used to specify parameter λ, which is a positive value controlling
the denoising strength. Smaller λ implies stronger denoising.

Input lambda:5 lambda:20 lambda:80

tvrestore lambda:5 lighthouse.bmp result1.bmp

tvrestore lambda:20 lighthouse.bmp result2.bmp

tvrestore lambda:80 lighthouse.bmp result3.bmp

The images above show a noisy input image f and the results of TV-regularized denoising with
three different λ values. For this image, the right λ seems to be about 20.

Deblurring (deconvolution) The image deblurring problem is to recover u from a given blurry
and noisy image f . For Gaussian noise, the degradation model is

f = Ku+ η,

where K is the blur operator. For simplicity, the tvreg package is limited to the easier case
of deconvolution, where Ku = ϕ ∗ u, where ϕ is the blur point spread function. To deal with
boundaries in the convolution, u is first extended to R2 by its symmetric even extension. It is
assumed that ϕ is known or at least that a reasonable approximation is available. There are also
“blind deconvolution” methods for the case where ϕ is unknown [12, 37], however, we do not
discuss them further here.

Use the K option with tvrestore to specify the point spread function:

tvrestore lambda:〈λ〉 K:〈kernel〉 f.bmp u.bmp

where 〈kernel〉 is one of the following

Example
disk:〈radius〉 filled disk of radius 〈radius〉 K:disk:3.1
gaussian:〈sigma〉 Gaussian of parameter 〈sigma〉 K:gaussian:0.85
image file read from an image K:mykernel.bmp
text file read from a text file K:mykernel.txt
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If the kernel is specified as an image, the kernel coefficients are derived from the grayscale pixel
values and normalized to sum to one.

Alternatively, the kernel may be specified with a text file. This method allows for specifying
coefficients with more precision and for specifying negative coefficient values. The text file format
is described above. When using a text file, the coefficients are not normalized to sum to one, nor
is it required that they do sum to one.

The program solves for u approximately equal to f ∗ ϕ. Parameter λ balances between de-
blurring accuracy and denoising, where smaller λ implies stronger denoising (but at the cost of
deblurring accuracy).

Input lambda:100 K:disk:1.8 lambda:1e3 K:disk:1.8 lambda:1e4 K:disk:1.8

tvrestore lambda:100 K:disk:1.8 blurry.bmp result1.bmp

tvrestore lambda:1e3 K:disk:1.8 blurry.bmp result2.bmp

tvrestore lambda:1e4 K:disk:1.8 blurry.bmp result3.bmp

The input image above is from a photograph that was taken out of focus. Restoration results
are shown using a disk-shaped kernel of radius 1.8 for three different λ values. Notice that
overshooting λ is much worse than undershooting.

Input lambda:1e3 K:disk:1 lambda:1e3 K:disk:1.8 lambda:1e3 K:disk:2.6

tvrestore lambda:1e3 K:disk:1 blurry.bmp result1.bmp

tvrestore lambda:1e3 K:disk:1.8 blurry.bmp result2.bmp

tvrestore lambda:1e3 K:disk:2.6 blurry.bmp result3.bmp

In these images, the λ value is fixed at 103 and the kernel radius is varied. We learn another
lesson here: overshooting the kernel radius is much worse than undershooting.
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Inpainting In the image inpainting problem, the given image f is known only on Ω\D, and the
problem is to interpolate the unknown region D.

Use the D option to specify the inpainting domain:

tvrestore lambda:〈λ〉 D:〈domain〉 f.bmp u.bmp

where 〈domain〉 is a text or image file describing an array of the same size as the f . The domain
D is derived from the values that are greater than 0.5 (or if reading the domain from an image,
pixels whiter than 50% graylevel). These pixels are considered as unknown in the inpainting
problem.

Parameter lambda controls the denoising strength outside of the inpainting region, where
smaller lambda implies stronger denoising. To keep pixels outside of the inpainting region ap-
proximately unchanged, set lambda to a large value.

Input mask.bmp Inpainted

tvrestore D:mask.bmp lambda:1e3 input.bmp inpainted.bmp

Inpainting is more effective on domains that are thin, like on wires or text. Results are usually
poor on domains with large diameter. In the example above, I attempted to use inpainting to
remove a traffic signal. The result is reasonable (although yet unnatural) over the pole mount,
but much worse on the signal itself.

Input mask.bmp Inpainted Equalized

convert -threshold 75% ishihara.bmp mask.bmp

tvrestore D:mask.bmp lambda:10 ishihara.bmp inpainted.bmp

convert -equalize inpainted.bmp enhanced.bmp

Another application for inpainting is passing Ishihara color blindness tests. This particular image
was designed so that the number 74 is visible to those with normal color vision while a dichromat
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may see the number 21. We apply a 75% graylevel threshold to find the white gaps between
the dots to form an inpainting domain, then use tvrestore to perform inpainting. Histogram
equalization is applied in the final image to make colors more distinct.

Noise models Good results depend on using a noise model that accurately describes the noise
in the given image. Three different noise models are supported:

Gaussian P
(
f(x)|z(x)

)
= 1

Z exp
(
−
(
z(x)−f(x)

)2
2σ2

)
Laplace P

(
f(x)|z(x)

)
= 1

Z exp
(
− |z(x)−f(x)|

2σ2

)
Poisson P

(
f(x)|z(x)

)
= 1

Z exp
(
−z(x)

)
z(x)f(x)

where z = u for denoising and z = Ku for deconvolution, and 1
Z is the normalization such that

densities sum to one. The original Gaussian (L2) model was introduced by Rudin, Osher and
Fatemi [25], the Laplace (L1) model was developed by Chan and Esedoglu [10], and the Poisson
model was developed by Le et al. [21]. These three noise models all lead to convex minimization
problems.

The noise model is specified with option noise:

noise:gaussian or noise:l2 Gaussian noise model (default)
noise:laplace or noise:l1 Laplace noise model
noise:poisson Poisson noise model

The Gaussian model is a good default choice since it is often a reasonable approximation of
the true noise distribution, the minimization model has reliable theoretical properties, and is com-
putationally most efficient in implementation. The Laplace and Poisson models are more effective
in certain specialized applications. The Laplace model is better for fat tail noise distributions like
salt-and-pepper and dark shot noise. The Poisson model describes low-light image acquisition
and also is a rough approximation of multiplicative noise.

Input image Denoised with Laplace model

10



Spatially-varying fidelity weight The fidelity weight λ controls the amount of denoising.
This parameter must be tuned for good results, since choosing a large λ removes a limited amount
of noise while a small λ removes more noise but smooths out the signal. If the problem involves a
blur kernel, λ also influences the deconvolution: large λ enforces stronger deconvolution (Ku ≈ f)
with weaker denoising while small λ has weaker deconvolution with stronger denoising.

In many cases, tuning λ as a constant parameter is enough to find an reasonable result.
However, for some applications (perhaps in special experiments) you may want to apply a different
fidelity weight λ in different parts of the image. A spatially-varying λ(x) may be specified as

Example
lambda:〈file〉 read from a file lambda:mylambda.txt
lambda:〈scalefactor〉:〈file〉 read from a file and scale lambda:2.5:mylambda.txt

lambda:100:mylambda.bmp

The array described by the file must have the same number of rows and columns as the input
image. The array values may be scaled by a constant factor with lambda:〈scalefactor〉:〈file〉.

When specifying λ(x) from an image, the array values are read from the image graylevel
intensities with black as 0 and white as 1. To create λ(x) values greater than 1, use the syntax
lambda:〈scalefactor〉:〈file〉 to scale λ(x) by a constant factor.

Additional parameters Optionally, these additional parameters may be set to fine tune the
minimization algorithm:

tol:〈number〉 specify convergence tolerance
maxiter:〈number〉 specify maximum number of iterations
gamma1:〈number〉 specify γ1 the constraint weight for ~d = ∇u
gamma2:〈number〉 specify γ1 the constraint weight for z = Ku

These options do not change the minimization problem, they only affect the speed and accuracy
of the algorithm. By default, the tolerance is 10−3, the maximum iterations is 50, and γ1 = 5,
γ2 = 8.

2.2 Image segmentation

Given a grayscale image f , the chanvese command line program uses the Chan-Vese “active
contours without edges” segmentation method [8] to segment the image into two regions. This is
done by finding a local minimizer of

min
c1,c2,C

µLength(C) + ν Area(C)

+ λ1

∫
inside(C)

(
f(x)− c1

)2
dx+ λ2

∫
outside(C)

(
f(x)− c2

)2
dx.

The goal is to find scalars c1, c2 and a closed curve C that minimize this functional. The method
can be understood as finding a good approximation to f of the form

u(x) =

{
c1 if x is inside C,
c2 if x is outside C.
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The parameter µ ≥ 0 enforces smoothness on the curve by penalizing its length. Parameter ν may
be either sign and penalizes (if ν > 0) or rewards (if ν < 0) the area inside the curve. Parameters
λ1 > 0 and λ2 > 0 penalize the approximation error inside and outside of the curve.

Chan-Vese is a two-phase method, meaning it segments the image into two regions (inside of
C and outside of C). There are also multiphase segmentation methods that segment the image
into more than two parts, but we do not investigate them here.

Level set functions Instead of representing the curve C explicitly, it is represented as the
zero-crossing of a level set function ϕ, by the relationship C = {(x, y) : ϕ(x, y) = 0}. With this
representation, C is a closed curve and it splits space into two regions according to the sign of ϕ:{

ϕ(x, y) > 0 (x, y) is inside of C,
ϕ(x, y) < 0 (x, y) is outside of C.

We will refer to the region where ϕ is positive as the “inside” of C, but this is arbitrary since −ϕ
represents the same C. As an example, the level set function

ϕ(x, y) = r −
√
x2 + y2

y

x

C

ϕ

represents a circle of radius r.

Color If f is a color image, then the segmentation is performed with the Chan-Sandberg-Vese
vectorial extension [6],

min
c1,c2,C

µLength(C) + ν Area(C)

+ λ1

∫
inside(C)

‖f(x)− c1‖22 dx+ λ2

∫
outside(C)

‖f(x)− c2‖22 dx.

Program options The command line options for the chanvese program are

mu:〈number〉 length penalty µ (default 0.25)
nu:〈number〉 area penalty ν (default 0.0)
lambda1:〈number〉 fit weight inside the curve λ1 (default 1.0)
lambda2:〈number〉 fit weight outside the curve λ2 (default 1.0)
phi0:〈file〉 read initial level set from an image or text file
tol:〈number〉 convergence tolerance (default 10−4)
maxiter:〈number〉 maximum number of iterations (default 500)
dt:〈number〉 time step (default 0.5)
display:〈style〉 display style of the output segmentation (explained below)
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The most important parameter is the length penalty µ. Larger µ assigns more penalty to curve
length and produces a smoother segmentation curve. The parameter must be balanced between
ignoring noise and capturing meaningful detail.

Unfortunately, the implemented stopping condition is not always effective, it is fooled into
stopping prematurely if the evolution is slow while in other cases not stopping until the maximum
iteration limit. To override the stopping condition, set tol:0 and maxiter:〈number〉 to specify
a fixed number of iterations to run.

Input Chan-Vese Simple thresholding

chanvese mu:0.2 display:binary wrench.bmp chanvese.bmp

convert -threshold 65% wrench.bmp thresh.bmp

Chan-Vese finds a wrench in this noisy example image. For comparison, segmentation by simple
graylevel thresholding is also shown.

Initialization By default, the segmentation is initialized with the level set function

ϕ(x, y) = sin π
5x sin π

5 y.

which defines the initial segmentation as a checkerboard shape. Such an initialization has been
observed to have faster convergence than with more regular level set functions. When using the
default initialization, the meaning of the result’s “inside” vs. “outside” is arbitrary, since ϕ and
−ϕ represent the same curve.

It is important to note that Chan-Vese finds a local minimizer, not necessarily a global one,
which can be practically useful. Different local minimizers may identify different objects in the
image. If an approximate segmentation of the object of interest is known (or just its rough
location), then this information can be used to make a better initialization.

An initial level set function can be specified as phi0:〈file〉, where 〈file〉 is either a text file or
image file. When using an image file, the values are read from the graylevel intensities with black
as −1 and white as +1. Using a specific initialization can help to capture a particular object in
the image and also gives meaning to the curve’s “inside” vs. “outside.”

Display style The segmentation output can be displayed in several different ways.

display:composite as a colorful overlay composited with the input (default)
display:binary as a binary image where white = inside and black = outside
display:curve as a binary image of only the curve
display:inside as a cutout of the input image inside the curve
display:outside as a cutout of the input image outside the curve
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The composite style is the default, which shows a grayscale version of the input with the
segmentation indicated with blue (inside) and red (outside). One of the other styles may be more
useful depending on the application, for example, a binary or curve segmentation output can be
easily read as an input to another program.

Input∗ display:composite display:binary display:curve display:outside

chanvese display:composite toad.bmp result1.bmp

chanvese display:binary toad.bmp result2.bmp

chanvese display:curve toad.bmp result3.bmp

chanvese display:outside toad.bmp result4.bmp

3 Usage in C/C++

3.1 Image restoration

To use tvreg image restoration from C/C++ programs, copy the files tvreg.h, tvreg.c, and
num.h into your project and #include the tvreg.h header file. You will also need to configure
your project to link with the FFTW library.

The file num.h defines a typedef num, which you may configure as either double or float.
By default it is double. To use float, add the statement #define NUM SINGLE before including
tvreg.h (or add -DNUM SINGLE to the project compile flags). The corresponding version of the
FFTW library (libfftw3 or libfftw3f) is needed to link the program. See section 7 for help on
compiling.

The main computation routine is TvRestore, and options are set by creating a tvregopt
object. For example, the following configures and runs TV-regularized grayscale deconvolution
with the Laplace noise model:

num Kernel[9] = {0.000, 0.125, 0.000,
0.125, 0.500, 0.125,
0.000, 0.125, 0.000};

tvregopt *Opt = TvRegNewOpt(); /* Create a tvregopt object */

TvRegSetLambda(20); /* Set lambda = 20 */
TvRegSetKernel(Opt, Kernel, 3, 3); /* Set kernel of size 3x3 */
TvRegSetNoiseModel(Opt, "Laplace"); /* Set Laplace noise model */

memcpy(u, f, sizeof(num)*Width*Height); /* Use u = f as initial guess */
TvRestore(u, f, Width, Height, 1, Opt); /* Run restoration */

TvRegFreeOpt(Opt); /* Free tvregopt object */

∗Photograph by Charles H. Smith, U.S. Fish and Wildlife Service.
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TvRestore

int TvRestore(num *u, const num *f, int Width, int Height, int NumChannels,
const tvregopt *Opt)

Image u is both an input and output of the routine. Image u should be set by the caller to an
initial guess, for example a reasonable generic initialization is to set u as a copy of f. Image u is
overwritten with the restored image.

The input image f should be a contiguous array of size Width×Height×NumChannels in planar
row-major order,

f[x + Width*(y + Height*k)] = kth component of pixel (x, y).

The image intensity values of f should be scaled so that the maximum intensity range of the true
clean image is from 0 to 1. It is allowed that f have values outside of [0, 1] (as spurious noisy
pixels and the effects of blur may cause f to exceed this range), but it should be scaled so that
the restored image is in [0, 1]. This scaling is especially important for the Poisson noise model.

Typically, NumChannels is either 1 (grayscale image) or 3 (color), but generally it may be any
positive integer. If NumChannels > 1, then vectorial TV regularization is used in place of TV.

Other options are specified through Opt. If Opt = NULL, then TvRestore does denoising
with the Gaussian noise model. But for practical use, you will probably want to call at least
TvRegSetLambda or TvRegSetVaryingLambda to set the fidelity weight λ.

First use tvregopt Opt = TvRegNewOpt() to create a new options object with default options
(denoising with the Gaussian noise model). Then use any of the following functions.

TvRegSetLambda specify a constant fidelity weight λ
TvRegSetVaryingLambda specify a spatially-varying fidelity weight λ(x)
TvRegSetKernel kernel for deconvolution problems
TvRegSetNoiseModel noise model
TvRegSetTol convergence tolerance
TvRegSetMaxIter maximum number of iterations
TvRegSetGamma1 constraint weight on ~d = ∇u
TvRegSetGamma2 constraint weight on z = Ku
TvRegSetPlotFun custom plotting function

TvRestore does not change Opt or any memory attached to it. Opt can be reused for multiple
restoration problems.

TvRegSetLambda

void TvRegSetLambda(tvregopt *Opt, num Lambda)

TvRegSetLambda specifies a constant fidelity weight λ. The syntax is similar for the other
scalar parameters TvRegSetTol, TvRegSetMaxIter, TvRegSetGamma1, TvRegSetGamma2. Smaller
Lambda implies stronger denoising. This setting is ignored if TvRegSetVaryingLambda is also set.
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TvRegSetVaryingLambda

void TvRegSetVaryingLambda(tvregopt *Opt,
const num *VaryingLambda, int LambdaWidth, int LambdaHeight)

TvRegSetVaryingLambda specifies a spatially-varying fidelity weight λ(x). This can be used
to apply different denoising strength over different parts of the image (for example, less denoising
on textured areas). It can also be used for inpainting by setting

VaryingLambda[x + Width*y] =

{
0 if pixel (x, y) is unknown,
C if pixel (x, y) is known,

where C is any positive value. Pixels where VaryingLambda is zero are considered unknown and
are inpainted. The other pixels are denoised (and deconvolved, if a kernel is also set). To inpaint
but keep the known pixels approximately unchanged, set C to a large value.

If TvRegSetVaryingLambda is used to set a non-null VaryingLambda, then this overrides the
constant λ setting made with TvRegSetLambda.

TvRegSetKernel

void TvRegSetKernel(tvregopt *Opt,
const num *Kernel, int KernelWidth, int KernelHeight)

TvRegSetKernel specifies the kernel for a deconvolution problem. Kernel should be a con-
tiguous array of size KernelWidth×KernelHeight in row-major order,

Kernel[x + KernelWidth*y] = K(x, y).

If Kernel = NULL, then no deconvolution is performed.

TvRegSetNoiseModel

int TvRegSetNoiseModel(tvregopt *Opt, const char *NoiseModel)

TvRegSetNoiseModel specifies the noise model. NoiseModel should be a string specifying one
of the following:

"Gaussian" or "L2" (default) Additive white Gaussian noise (AWGN), this
is the noise model used in the traditional Rudin-Osher-
Fatemi model;

"Laplace" or "L1" Laplace noise, effective for salt-and-pepper noise;

"Poisson" Each pixel is an independent Poisson random variable
with mean equal to the exact value.
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TvRegSetPlotFun

void TvRegSetPlotFun(tvregopt *Opt,
int (*PlotFun)(int, int, num, const num*, int, int, int, void*),
void *PlotParam)

TvRegSetPlotFun specifies a plotting function. Setting a plotting function gives control over
how TvRestore displays information. Setting PlotFun = NULL disables all normal display (error
messages are still displayed). An example PlotFun is

int ExamplePlotFun(int State, int Iter, num Delta,
const num *u, int Width, int Height, int NumChannels, void *PlotParam)

{
switch(State)
{
case 0: /* Running */

fprintf(stderr, " RUNNING Iter=%4d, Delta=%7.4f\r", Iter, Delta);
break;

case 1: /* Converged successfully */
fprintf(stderr, " CONVERGED Iter=%4d, Delta=%7.4f\n", Iter, Delta);
break;

case 2: /* Maximum iterations exceeded */
fprintf(stderr, " Maximum number of iterations exceeded!\n");
break;

}
return 1;

}

The State argument is either 0, 1, or 2, and indicates TvRestore’s status. Iter is the number
of iterations completed, and Delta is the change in the solution

Delta = ‖ucur − uprev‖2/‖f‖2.

Argument u gives a pointer to the current solution, which can be used to plot an animated
display of the solution progress. PlotParam is a void pointer that can be used to pass additional
information to PlotFun if needed.

The plot function return value tells TvRestore whether to continue the computation. A
nonzero value tells TvRestore to continue and zero value means stop.

TvRegPrintOpt

void TvRegPrintOpt(const tvregopt *Opt);

TvRegPrintOpt prints the current options to stdout. It also prints a brief description of the
algorithm that TvRestore will use to solve the restoration problem. This is mostly for debugging
purposes to verify that TvRestore will receive the expected options.

TvRegGetAlgorithm

const char *TvRegGetAlgorithm(const tvregopt *Opt)

TvRegGetAlgorithm returns a string containing a brief description of the algorithm that TvRestore
will use to solve the restoration problem described by Opt.

17



3.2 Image segmentation

To use Chan-Vese image segmentation in C/C++ programs, copy the files chanvese.h, chanvese.c,
and num.h into your project and #include the chanvese.h header file.

The file num.h defines a typedef num, which you may configure as either double or float.
By default it is double. To use float, add the statement #define NUM SINGLE before including
chanvese.h (or add -DNUM SINGLE to the project compile flags). The FFTW library is not
required for Chan-Vese segmentation.

The main computation routine is ChanVese, and options are set by creating a chanveseopt
object. The following runs Chan-Vese segmentation with length penalty µ = 0.8, maximum
iterations set to 100, and otherwise default arguments.
chanveseopt *Opt = ChanVeseNewOpt(); /* Create a new chanveseopt object */

ChanVeseSetMu(0.8); /* Set mu = 0.8 */
ChanVeseSetMaxIter(100); /* Set maximum iterations to 100 */

ChanVeseInitPhi(Phi, Width, Height); /* Default initialization for phi */
ChanVese(Phi, f, Width, Height, 1, Opt); /* Run segmentation */

ChanVeseFreeOpt(Opt); /* Free chanveseopt object */

ChanVeseInitPhi

void ChanVeseInitPhi(num *Phi, int Width, int Height)

ChanVeseInitPhi fills array Phi with the generic default starting function

ϕ(x, y) = sin π
5x sin π

5 y.

If an approximate segmentation of the object of interest is known (or just its rough location),
then this information can be used to make a better initialization than ChanVeseInitPhi.

ChanVese

void ChanVese(num *Phi, const num *f,
int Width, int Height, int NumChannels, const chanveseopt *Opt)

ChanVese performs Chan-Vese two-phase segmentation on image f with options Opt. The
image f should be a contiguous array of size Width×Height×NumChannels in planar row-major
order,

f[x + Width*(y + Height*k)] = kth component of pixel (x, y).

Array Phi is both an input and output of the routine. It should be set by the caller to an
array of size Width×Height representing the initial level set function. The initial segmentation
is defined by the sign of Phi, where positive is inside the curve and negative is outside the
curve. A reasonable generic initialization for Phi is provided with ChanVeseInitPhi. After the
computation, Phi is overwritten with a level set function representing the final segmentation.

Other options are specified through Opt. If Opt = NULL, then ChanVese does segmentation
with default parameters. For practical use, you will probably at least want to call ChanVeseSetMu
to tune the length penalty.
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First use chanveseopt Opt = ChanVeseNewOpt() to create a new options object with default
options. Then use any of the following functions.

void ChanVeseSetMu(chanveseopt *Opt, num Mu) length penalty µ
void ChanVeseSetNu(chanveseopt *Opt, num Nu) area penalty ν
void ChanVeseSetLambda1(chanveseopt *Opt, num Lambda1) fit weight inside the curve λ1

void ChanVeseSetLambda2(chanveseopt *Opt, num Lambda2) fit weight outside the curve λ2

void ChanVeseSetTol(chanveseopt *Opt, num Tol) convergence tolerance
void ChanVeseSetMaxIter(chanveseopt *Opt, int MaxIter) maximum number of iterations
void ChanVeseSetDt(chanveseopt *Opt, num dt) time step parameter dt

RegionAverages

void RegionAverages(num *c1, num *c2, const num *Phi, const num *f,
int Width, int Height, int NumChannels)

RegionAverages computes the average values inside and outside of the curve described by Phi.
Arguments c1 and c2 should be arrays with space for at least NumChannels elements. The function
computes c1[k] as the average value of f[x + Width*(y + Height*k)] over the points where
Phi[x + Width*y] ≥ 0 and c2[k] as the average value over points where Phi[x + Width*y] < 0.

ChanVeseSetPlotFun

void ChanVeseSetPlotFun(chanveseopt *Opt,
int (*PlotFun)(int, int, num, const num*, const num*, const num*,

int, int, int, void*), void *PlotParam)

For control over how ChanVese outputs information, a custom plotting function may be
set with ChanVeseSetPlotFun. Setting PlotFun = NULL disables normal display. An example
PlotFun is

int ExamplePlotFun(int State, int Iter, num Delta,
const num *c1, const num *c2, const num *Phi,
int Width, int Height, int NumChannels, void *PlotParam)

{
switch(State)
{
case 0: /* Running */

fprintf(stderr, " RUNNING Iter=%4d, Delta=%7.4f\r", Iter, Delta);
break;

case 1: /* Converged successfully */
fprintf(stderr, " CONVERGED Iter=%4d, Delta=%7.4f\n", Iter, Delta);
break;

case 2: /* Maximum iterations exceeded */
fprintf(stderr, " Maximum number of iterations exceeded!\n");
break;

}
return 1;

}
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The State argument is either 0, 1, or 2, and indicates TvRestore’s status. Iter is the number
of iterations completed, and Delta is the change in the solution defined in terms of the number
of pixels where Phi has changed sign,

Delta =
#{x : ϕcur(x)ϕprev(x) < 0}

number of pixels
.

Arguments c1, c2, Phi give pointers to the current solution. The last argument PlotParam is a
void pointer that can be used to pass additional information to PlotFun if necessary.

The plot function return value tells ChanVese whether to continue the computation. A nonzero
value tells ChanVese to continue and zero value means stop.

ChanVesePrintOpt

void ChanVesePrintOpt(const tvregopt *Opt);

ChanVesePrintOpt prints the current options to stdout. This is mostly for debugging purposes
to verify that ChanVese will receive the expected options.

4 Usage in MATLAB

tvreg can be used to perform image restoration and segmentation directly in Matlab. For
better computational performance, the main computation functions can be compiled as Matlab
MEX functions, see section 7. However, in case compiling is not possible, (slower) pure M-code
equivalents are also provided. Matlab will use the MEX versions if they are compiled and
automatically fall back to the M-code versions otherwise.

4.1 Image restoration

tvreg image restoration can performed in Matlab with the following functions.

Denoising u = tvdenoise(f,lambda)

Deconvolution u = tvdeconv(f,lambda,K)

Inpainting u = tvinpaint(f,lambda,D)

In these three functions, f is the input image, lambda is a positive parameter tuning the
denoising strength, and u is the restored image.

Image f may be either an M×N matrix for a grayscale image or more generally an M×N×P
array, where usually P = 3 for a color image, but P may be any positive integer for an arbitrary
multichannel image. The image f should be scaled so that the maximum intensity range of the
true clean image is from 0 to 1. It is allowed that f have values outside of [0, 1] (the effects of
noise and blur may cause f exceed this range), but it should be scaled so that the restored image
is in [0, 1] (and not [0, 255]). This scaling is especially important for the Poisson noise model.

The parameter lambda is a positive value specifying the fidelity weight where smaller lambda
implies stronger denoising. A spatially-varying fidelity weight can be specified by setting lambda
as an M×N matrix.
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Denoising The function u = tvdenoise(f,lambda) performs TV-regularized denoising, where
f is a noisy image and lambda is a parameter controlling the denoising strength as described above.

Deconvolution The function u = tvdeconv(f,lambda,K) performs TV-regularized deconvo-
lution, where K should be a matrix representing the impulse response of the blur operation K.
tvdeconv solves for u such that approximately u = K ∗ f.

K = gaussian(0.7);
K = K(:)*K(:)';
f = double(imread('turtles.png'))/255;
u = tvdeconv(f,500,K);

Beware that the coefficients of K are not automatically normalized to sum to one, nor is it required.
Normalizing K can be done conveniently in Matlab as K = K/sum(K(:)).

K = [0,1,0;
1,4,1;
0,1,0];

K = K/sum(K(:)); % Normalize to sum to one
u = tvdeconv(f,lambda,K);

Inpainting The function u = tvinpaint(f,lambda,D) performs TV-regularized inpainting,
where D should be an M×N logical array specifying an inpainting domain. Pixels where D is true
are considered unknown and are interpolated (inpainted). Pixels where D is false are denoised.
To inpaint domain D but keep pixels outside of D approximately unchanged, set lambda to a large
value.

f = double(imread('rabbit.png'))/255;
D = (imread('rabbit−D.png') ˜= 0);
u = tvinpaint(f,1e4,D);

Since inpainting is actually a special case of spatially-varying fidelity weight, inpainting can be
performed using tvdenoise with the arguments tvdenoise(f,lambda*(∼D)).

Other parameters The Gaussian noise model is used by default. The noise model may be
specified as

tvdenoise(...,model)
tvdeconv(...,model)
tvinpaint(...,model)

where model is a case-insensitive string equal to 'Gaussian' (or 'L2'), 'Laplace' (or 'L1'), or
'Poisson'. Additionally, the tolerance and maximum number of iterations specified as

tvdenoise(...,model,tol,maxiter)
tvdeconv(...,model,tol,maxiter)
tvinpaint(...,model,tol,maxiter)

These options do not change the minimization problem, only the accuracy of the algorithm.
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Two further parameters may be given to any of these functions:

(...,model,tol,maxiter,plotfun,u0)

Argument plotfun is a plot callback function to customize the display of the solution progress.
Argument u0 is the initial guess of the solution, which should have the same size as the input
image. By default, u0 = f is used as the initial guess. A better initial guess may allow the
solution to be found in fewer iterations.

For the plot callback, plotfun is the name of a function or a function handle. An example
plotfun is

function myplot(state, iter, delta, u)
switch state

case 0 % Running
fprintf(' Iter=%4d Delta=%7.3f\n', iter, delta);

case 1 % Converged
fprintf('Converged successfully.\n');

case 2 % Maximum iterations exceeded
fprintf('Maximum number of iterations exceeded.\n');

end

if size(u,3) == 3
% Display color image
image(min(max(u,0),1));

else
% Display grayscale image
image(u*255);
colormap(gray(256));

end

axis image
axis off
title(sprintf('Iter=%d Delta=%.4f', iter, delta));

shg; % Force figure to foreground

Optionally, the plot function can return a scalar value to tell whether computation should continue.
Returning a nonzero value tells the computation to continue and a zero value means stop.

4.2 Image segmentation

Chan-Vese two-phase segmentation can be performed in Matlab with the chanvese function.

f = double(imread('toad.jpg'))/255;
phi = chanvese(f);
imagesc(phi > 0);
axis image

The chanvese function has a number of optional arguments which can be passed either as
additional arguments or as an options struct.
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phi = chanvese(f,phi0,opt) segments image f where phi0 is the initial level set function,
and opt is a struct containing all or any subset of the following parameters:

opt.tol convergence tolerance (default 10−4)
opt.maxiter maximum number of iterations (default 500)
opt.mu length penalty parameter (default 0.25)
opt.nu area penalty (default 0)
opt.lambda1 inside fit penalty (default 1)
opt.lambda2 outside fit penalty (default 1)
opt.dt timestep parameter (default 0.5)
opt.plotfun plotting function
opt.verbose show verbose information

Unfortunately, the implemented stopping condition is not always effective, it is fooled into
stopping prematurely if the evolution is slow while in other cases not stopping until the maximum
iteration limit. To override the stopping condition, set opt.tol to 0 and use opt.maxiter to
specify a fixed number of iterations.

phi = chanvese(f,phi0,tol,maxiter,mu,nu,lambda1,lambda2,dt,plotfun) is the alter-
native syntax. Passing empty set [] or omitting an argument specifies the default value. For
example,

% Run 50 iterations with length penalty mu
phi = chanvese(f,[],0,50,mu);

The plot function has similar syntax as for the image restoration functions.

function myplot(state, iter, delta, phi)
switch state

case 0 % Running
fprintf(' Iter=%4d Delta=%7.3f\n', iter, delta);

case 1 % Converged
fprintf('Converged successfully.\n');

case 2 % Maximum iterations exceeded
fprintf('Maximum number of iterations exceeded.\n');

end

imagesc(phi);
colormap(gray(256));
axis image
axis off
title(sprintf('Iter=%d Delta=%.4f', iter, delta));

shg; % Force figure to foreground

Optionally, the plot function can return a scalar value to tell whether chanvese should continue.
Returning a nonzero value tells chanvese to continue and a zero value means stop.
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5 Mathematical Background

denotes Laplacian, and ‖·‖p denotes the Lp norm on Ω. Variable x will be used to denote a point
in two-dimensional space.

5.1 Image restoration

The image restoration methods in tvreg are based on the Rudin-Osher-Fatemi [25] total variation
(TV) denoising technique, see for example Chan and Shen’s book [11]. A general model for
TV-regularized denoising, deblurring, and inpainting is to find an image u that minimizes

min
u∈BV (Ω)

∫
Ω
|∇u(x)| dx+

∫
Ω
λ(x)F

(
Ku(x), f(x)

)
dx, (1)

where the integrals are over a two-dimensional bounded set Ω ⊂ R2 and |∇u(x)| denotes the
gradient magnitude of u at x ∈ R2. Function f is the given noise and blur corrupted image, K
is the blur operator, λ(x) is a nonnegative function specifying the regularization strength, and F
determines the type of data fidelity:

F
(
Ku(x), f(x)

)
=


1
2

(
Ku(x)− f(x)

)2 Gaussian noise,∣∣Ku(x)− f(x)
∣∣ Laplace noise,

Ku(x)− f(x) logKu(x) Poisson.

This general model can be used to perform image denoising, deconvolution, and inpainting as
special cases. For simplicity, λ(x) is usually specified as a positive constant, λ(x) ≡ λ. For
inpainting problems, where f is considered unknown on a region D ⊂ Ω, the fidelity strength is

λ(x) =

{
0 if x ∈ D,
C otherwise,

where C > 0 is a constant parameter.
In other words, the TV-regularization strategy is to search over all possible functions† to find

a function u : Ω → R that minimizes (1). In the discrete setting, the minimization has one
dimension of freedom in each pixel of u. So even for a 256 × 256-pixel image, the minimization
is over 2562 = 65 536 dimensions. The search domain of the minimization is indeed impressively
vast.

A technical remark: the gradient magnitude |∇u| should actually be interpreted in a distribu-
tional sense; functions u with jump discontinuities are allowed. The total variation of an image
is a Radon measure

‖u‖TV :=
∫

Ω
|Du| := sup

{∫
Ω
udiv~g dx : ~g ∈ C1

c (Ω,R2), ‖|~g|‖∞ ≤ 1
}
.

The supremum is over all vector fields ~g that are continuously differentiable, have support com-
pactly contained in Ω, and have bounded magnitude |~g(x)| ≤ 1. When u is smooth, ‖u‖TV =∫

Ω |∇u| dx.

†More precisely, the minimization is over all functions of bounded variation BV (Ω).
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Theoretical properties for grayscale restoration

� For denoising with the Gaussian model, if f ∈ L2, then the minimizer u exists and is unique
and is stable in L2 with respect to perturbations in f [18].

� For denoising with the Laplace model, if f ∈ L1, then minimizers u exist but are generally
not unique and are not continuous with respect to f [10].

� For denoising with the Poisson model, if f is positive and bounded, then the minimizer u
exists and is unique [21].

� For deblurring with the Gaussian model, if f ∈ L2, the exact solution is in BV , and
K : L1 → L2 is bounded, injective, and satisfies K[1] ≡ 1, then the minimizer u exists and
is unique [3].

� For inpainting with the Gaussian model, if the exact solution is in BV and takes values in
[0, 1], then minimizers u exist but are generally not unique [9].

Algorithms There are many algorithms for solving TV minimization problems, especially for
denoising or inpainting with the Gaussian noise model. To name just a few, there are semi-implicit
gradient descent [30], the discrete TV filter [7], Chambolle’s dual algorithm [4], FTVd splitting
with fixed-point continuation [34], graph cuts [5], and Haar frame shrinkage [27].

tvreg uses the split-Bregman method [17], which thanks to its operator splitting enable a
modular approach to solving the problems. This is what allows tvreg to tackle such a wide
variety of TV-regularized problems. Furthermore, split-Bregman has state-of-the-art competitive
efficiency and reliability. I don’t claim that tvreg/split-Bregman is the best possible method. The
other methods listed above each have their advantages, and moreover TV minimization algorithms
continue to be an active area of research.

5.2 Image segmentation

The Chan-Vese segmentation model [8] finds a local minimizer of

min
c1,c2,C

µLength(C) + ν Area(C)

+ λ1

∫
inside(C)

(
f(x)− c1

)2
dx+ λ2

∫
outside(C)

(
f(x)− c2

)2
dx,

where C is a closed curve and c1 and c2 are the average values inside and outside of C. The
weights µ, ν, λ1, λ2 control respectively the penalties on the curve’s length, area, and the fit inside
and outside of C. The Chan-Vese model is a simplification of the Mumford-Shah segmentation
model [23].

The problem is solved by representing C with a level set function ϕ through the relationship
C = {x : ϕ(x) = 0} (see section 2.2). By defining the Heaviside function and the Dirac measure,

H(t) =

{
1 if t ≥ 0,
0 if t < 0,

δ(t) =
d

dt
H(t),
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the curve’s length and enclosed area can be expressed as

Area(ϕ ≥ 0) =
∫

Ω
H
(
ϕ(x)

)
dx, Length(ϕ = 0) =

∫
Ω
δ
(
ϕ(x)

)
dx.

This allows the minimization to be rewritten in terms of the level set function,

min
c1,c2,ϕ

µ

∫
Ω
δ
(
ϕ(x)

)
dx+ ν

∫
Ω
H
(
ϕ(x)

)
dx

+ λ1

∫
Ω
H
(
ϕ(x)

)(
f(x)− c1

)2
dx+ λ2

∫
Ω

[
1−H

(
ϕ(x)

)](
f(x)− c2

)2
dx.

As developed in [8], the problem is then to find a locally optimal ϕ, which can be done by
evolving a PDE on ϕ until reaching steady state. The segmentation is obtained from the sign of
the resulting ϕ as {x : ϕ(x) > 0} and {x : ϕ(x) < 0}.

5.3 The state of the art

TV regularization is a flexible technique. Over the past two decades, it has led to successful
methods for image denoising, deblurring, inpainting, and a variety of other applications. Its
strengths are a well developed theoretical understanding and a number of fast algorithms.

There are recent works in particular applications that surpass TV regularization. This list is
not exhaustive, but a few highlights of suggested reading.

� Tensor-driven diffusion. The image structure tensor is defined at every point by the
2× 2 matrix formed from the outer product ∇u⊗∇u. The structure tensor can be used to
obtain robust estimates of the local edge orientation. Weickert [35] and Tschumperlé [31, 32]
developed methods for inpainting, denoising, and other problems using diffusion processes
that are steered by the structure tensor.

� Patch-based processing and self-similarity. Efros and Leung [15] proposed a patch-
based inpainting method capable of texture synthesis. This work inspired the nonlocal
means method [2], a simple and surprisingly effective denoising method based on patch
similarity. Nonlocal means has been extended to apply in other inverse problems, see for
example the frameworks proposed [16] and [24].

� Sparsity. Fueled by the interest in compressed sensing, sparse optimization has been found
successful for inverse problems in imaging. Block-matching and 3D filtering (BM3D) [14]
is a highly effective method for denoising. In an exciting recent work, Yu, Sapiro, and
Mallat [38] proposed a framework based on a union of subspaces model of sparsity to develop
computationally efficient methods for denoising and other problems.

Regarding Chan-Vese segmentation, its strength is its simplicity. The idea and level set
based approach can be extended to for example segmentation based on texture cues [26], nested
segmentation curves [13], and multiphase segmentation [20]. An improvement to Chan-Vese is
to minimize under a Sobolev gradient instead of the L2 gradient, leading to a PDE with better
stability properties [19, 29].
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To mention just a couple other works, segmentation by weighted aggregation (SWA) [28] is
a flexible method using a multiscale approach and Boykov and Jolly proposed an interactive
segmentation method using graph cuts [1]. See also Unnikrishnan et al. [33], which develops a
methodology toward the objective evaluation of segmentation methods.

6 Solution with Split Bregman

Methods for efficiently solving TV regularized minimizations is a topic of ongoing research. The
implementation in this package uses the recent split Bregman method of Goldstein and Osher [17].
At the time of this writing, split Bregman is one of the fastest methods for TV minimization, and
it is one of the few methods with the flexibility to handle all of our problem parameters and noise
models in a unified approach.

The split Bregman method solves a minimization problem by operator splitting and then
applying Bregman iteration to solve the split problem. For (1), the split problem is

min
~d,z,u

∫
Ω

∣∣~d(x)
∣∣ dx+

∫
Ω
λ(x)F

(
z(x), f(x)

)
dx

subject to ~d = ∇u, z = Ku

At first glance, it may appear that the split problem is no different from the original (1). The
point is that the two terms of the objective have been split: the first term

∫
|~d| only depends

directly on ~d and the second term
∫
λF (z, f) only on z. Of course, ~d and z are still indirectly

related through the constraints ~d = ∇u, z = Ku.
Bregman iteration is used to solve the split problem. In each iteration, Bregman iteration

calls for the solution of the following problem:

min
~d,z,u

∫
Ω
|~d| dx+

∫
Ω
λF (z, f) dx

+
γ1

2
‖~d−∇u−~b1‖22 +

γ2

2
‖z −Ku− b2‖22

(2)

where the additional terms are quadratic penalties enforcing the constraints and ~b1 and b2 are
variables related to the Bregman iteration algorithm.

The solution of (2), which minimizes jointly over ~d, z, u, is approximated by alternatingly
minimizing one variable at a time, that is, fixing z and u and minimizing over ~d, then fixing ~d
and u and minimizing over z, and so on. This leads to three variable subproblems.

The ~d subproblem Variables z and u are fixed, and the subproblem is

min
~d

∫
|~d| dx+

γ1

2
‖~d−∇u−~b1‖22.

Its solution decouples over x and is known in closed form:

~d(x) =
∇u(x) +~b1(x)

|∇u(x) +~b1(x)|
max

{
|∇u(x) +~b1(x)| − 1/γ1, 0

}
.

This is the key subproblem that drives the TV minimization.
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The z subproblem Variables ~d and u are fixed, and the subproblem is

min
z

∫
Ω
λF (z, f) dx+

γ2

2
‖z −Ku− b2‖22 .

The solution decouples over x. The optimal z satisfies

λ∂zF (z, f) + γ2(z −Ku− b2) = 0.

We solve this equation for z for each noise model F .

� For Gaussian noise with F (z, f) = 1
2(z − f)2,

z(x) =
Ku(x) + b2(x) + 1

γ2
λ(x)f(x)

1 + 1
γ2
λ(x)

.

� For Laplacian noise with F (z, f) = |z − f |,

z(x) = f(x) +
s(x)
|s(x)|

max
{
|s(x)| − 1

γ2
λ(x), 0

}
,

s = Ku− f + b2.

� For the Poisson model with F (z, f) = z − f log z,

z(x) = s(x)/2 +
√(

s(x)/2
)2 + 1

γ2
λ(x)f(x),

s = Ku− 1
γ2
λ+ b2.

In the special case that λ(x) = 0 (i.e., when the problem has an inpainting domain and x is in
the unknown region), the solution reduces to

z(x) = Ku(x) + b2(x).

The u subproblem Variables ~d and z are fixed, and the subproblem is

min
u

γ1

2
‖∇u− ~d+~b1‖22 +

γ2

2
‖Ku− z + b2‖22 .

For denoising and inpainting, K is identity and the optimal u satisfies

γ2
γ1
u−∆u = γ2

γ1
(z − b2)− div(~d−~b1),

which is a sparse, symmetric positive definite linear system. The solution u can be efficiently
approximated by Gauss-Seidel iteration.

For general K, the optimal u satisfies

(γ2γ1K
∗K −∆)u = γ2

γ1
K∗(z − b2)− div(~d−~b1), (3)
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where K∗ is the adjoint of K. The optimality equation is symmetric positive definite and may
be solved for example by preconditioned conjugate gradients. In the special case that Ku is a
convolution, Ku := ϕ ∗ u, the equation is efficiently solved in the Fourier domain:

û =
γ2
γ1

¯̂ϕ · (z − b2)̂ −
(
div(~d−~b1)

)̂
γ2
γ1

¯̂ϕ · ϕ̂− ∆̂
,

where ˆ denotes Fourier transform and · is pointwise multiplication. To avoid boundary artifacts,
the image should first be doubled along each dimension with its symmetric extension.

If ϕ is symmetric in both dimensions, the computation can be done more efficiently with
discrete cosine (DCT) transform. As developed by Martucci [22], convolution with symmetric
boundary handling can be done as

ϕ ∗ f = C−1
2e

(
C1e(ϕ) · C2e(f)

)
,

where C1e and C2e are the DCT-I and DCT-II transforms of the same period length. In this way,
the data does not need to be padded; symmetric boundaries are implied by the transforms. Noting
also that the transformed data is real, the memory cost with the DCT is several times lower than
with the Fourier transform. So if ϕ is even in each dimension, a computationally efficient strategy
to obtain u is

u = C−1
2e

[
C2e

(γ2
γ1
ϕ ∗ (z − b2)− div(~d−~b1)

)
C1e

(γ2
γ1
ϕ ∗ ϕ−∆

) ]
.

In tvreg, ϕ is tested for symmetry so that DCT can be used instead of Fourier when possible.

The full algorithm The minimization (1) is solved with the following iteration:

Initialize u = z = b2 = 0, ~d = ~b1 = 0
while “not converged”

Solve the u subproblem
Solve the ~d subproblem
Solve the z subproblem
~b1 := ~b1 +∇u− ~d
b2 := b2 +Ku− z

(4)

When solving the subproblems, the xth subproblem solution is computed from the current values
of all other variables and overwrites the previous value of variable x. Convergence may be checked
for example by testing the maximum difference from the previous iterate: ‖ucur − uprev‖2 < Tol .

Simplified algorithm The problem simplifies somewhat with the Gaussian noise model F (z, f) =
1
2(z − f)2. In this case, the z auxiliary variable is unnecessary, reducing the problem to

min
~d,u

∫
Ω
|~d| dx+ λ

∫
Ω

1
2(Ku− f)2 dx+

γ1

2
‖~d−∇u−~b1‖22.
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With this simplification there are only two variable subproblems. The ~d subproblem is the same
as previously. The u subproblem is

min
u
λ

∫
Ω

1
2(Ku− f)2 dx+

γ1

2
‖∇u− ~d+~b1‖22.

The optimality equation is

( λγ1K
∗K −∆)u = λ

γ1
K∗f − div(~d−~b1).

Depending on K, the optimality equation may be solved in the Fourier domain or by iterative
matrix techniques. The split Bregman algorithm is the same as previously (4) but without the
steps “Solve the z subproblem” and “b2 := b2 +Ku− z.”

Implementation Details In the implementation, the variables ~̃
d := ~d − ~b1 and z̃ := z − b2

are used instead of ~b1, b2. The main computation routine is TvRestore, which runs the Bregman
iteration and calls subroutines that solve the variable subproblems. The diagrams below illustrate
the main loop.

Simplified algorithm (UseZ = 0)

DShrink

Kernel?

UGaussSeidel

UDeconvDct

UDeconvFourier

Converged?

Start

None

Symmetric

General
No

End

Yes

General algorithm (UseZ = 1)

DShrink

Kernel?

UGaussSeidel

UDeconvDctZ

UDeconvFourierZ

Converged?

Model?

ZSolveL2

ZSolveL1

ZSolvePoisson

Start

None

Symmetric

General

No

End

Yes

L2

L1

Poisson
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7 Compiling Instructions

The compilation is configurable. At a minimum, the FFTW library is needed to compile. Op-
tionally, to read and write image formats other than BMP, the programs can be compiled with
libraries for JPEG, PNG, and TIFF support.

Format Library Add preprocessor flag
JPEG libjpeg LIBJPEG SUPPORT
PNG libpng LIBPNG SUPPORT
TIFF libtiff LIBTIFF SUPPORT
BMP (native) —

Also, tvreg can be compiled to use single precision (float) instead of double precision by adding
the preprocessor flag NUM SINGLE.

7.1 C/C++ on Linux or Mac OSX

On Ubuntu and other Debian-based Linux systems, the libraries can be installed by running the
following line in a terminal:

sudo apt-get install build-essential libfftw3-dev libjpeg8-dev libpng3-dev libtiff4-dev

On Fedora:

sudo yum install gcc fftw-devel libjpeg-devel libpng-devel libtiff-devel

On Mac OSX, the libraries can be installed with Fink:

sudo fink install fftw libjpeg libpng libtiff

Once the libraries are installed, use the GCC makefile to compile the programs. Open a
terminal in the directory of the tvreg sources and run the following line:

make -f makefile.gcc

This should produce two executables tvrestore and chanvese.

Troubleshooting The GCC makefile will try to use libjpeg, libpng, and libtiff. If linking with
these libraries is a problem, they can be disabled by commenting their line at the top of the
makefile.

# The following three statements determine the build configuration.

# For handling different image formats, the program can be linked with

# the libjpeg, libpng, and libtiff libraries. For each library, set

# the flags needed for linking. To disable use of a library, comment

# its statement. You can disable all three (BMP is always supported).

LDLIBJPEG=-ljpeg

LDLIBPNG=-lpng

LDLIBTIFF=-ltiff
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The makefile will automatically set the corresponding preprocessor symbols; only these lines need
to be changed. For example, to disable libjpeg and libtiff but to keep libpng support, comment
the first and third lines

#LDLIBJPEG=-ljpeg

LDLIBPNG=-lpng

#LDLIBTIFF=-ltiff

While libjpeg, libpng, and libtiff are optional, the FFTW library is required.

7.2 C/C++ on Windows

The code can be compiled using Microsoft Visual C++ (MSVC). Microsoft Visual Studio Express

http://www.microsoft.com/express/windows

can be downloaded for free.

FFTW The FFTW library is required to compile. To obtain FFTW, download the precompiled
Windows DLL files from

http://www.fftw.org/install/windows.html

In order for MSVC to link with FFTW, we must create LIB import libraries. Open a Visual
Studio Command Prompt by selecting Start Menu → Programs → Microsoft Visual Studio →
Visual Studio Tools→ Visual Studio Command Prompt. (Alternatively, open a regular command
prompt and run vcvarsall.bat.) Then, navigate to the FFTW DLL files and run the commands

lib /def:libfftw3-3.def
lib /def:libfftw3f-3.def
lib /def:libfftw3l-3.def

This should produce the LIB files libfftw3-3.lib, libfftw3f-3.lib, and libfftw3l-3.lib.

Building tvreg To build tvreg, perform the following steps.

1. Copy the FFTW DLL files to the tvreg folder.

2. Edit makefile.vc to specify where the header file fftw3.h and the lib files libfftw3-3.lib
are:

# Please specify the locations of fftw3.h and the FFTW libs

FFTW_DIR = "D:/libs/fftw-3.2.2.pl1-dll32"

FFTW_INCLUDE = -I(FFTW_DIR)

FFTW_LIB = $(FFTW_DIR)/libfftw3-3.lib $(FFTW_DIR)/libfftw3f-3.lib

3. In a Visual Studio Command Prompt, run

nmake -f makefile.vc

to build tvreg. This should produce programs tvrestore and chanvese.
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libjpeg and libpng (optional) It is optionally possible under Windows to compile the program
with libjpeg and libpng to add support for JPEG and PNG images (libtiff should be possible as
well, but it is not explored here). To avoid incompatibility problems, the reliable way to compile
is to build the libraries from source using the same compiler.

First, download the libjpeg, libpng, and also the zlib library sources. The zlib library is needed
to compile libpng.

� libjpeg sources: http://www.ijg.org/files/jpegsr8b.zip

� libpng sources: http://download.sourceforge.net/libpng/lpng143.zip

� zlib sources: http://gnuwin32.sourceforge.net/downlinks/zlib-src-zip.php

Create a folder to contain the libraries, C:\libs for instance. Unzip the library sources into
the libs folder so that they are structured as

libs
jpeg-8b

lpng143

zlib

This structure will help keep the code organized. Take care to rename the folder for zlib to “zlib”
since libpng will look for it. Below are the steps to build each library. If you want JPEG support,
build libjpeg. For PNG support, build zlib first and then build libpng.

Building libjpeg

1. Rename jconfig.vc to jconfig.h.

2. Open a Visual Studio Command Prompt (under Start Menu → Programs → Microsoft
Visual Studio → Visual Studio Tools), go to libs\jpeg-8b, and run

nmake -f makefile.vc libjpeg.lib

This should produce libjpeg.lib.

Building zlib

1. Change zconf.h line 287, which should have a comment about HAVE UNISTD H, to “#if 0.”

2. Open a Visual Studio Command Prompt, go to zlib\projects\visualc6, and run

vcbuild -upgrade zlib.dsp
vcbuild zlib.vcproj "LIB Release|Win32"

This should produce a folder “Win32 LIB Release” containing zlib.lib.

3. Copy zconf.h, zlib.h, and zlib.lib to libs\zlib (libpng will look here).
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Building libpng

1. First build zlib.

2. Change -MD to -MT in the CFLAGS line of lpng143\scripts\makefile.vcwin32
CFLAGS = -nologo -DPNG NO MMX CODE -MT -O2 -W3 -I..\zlib

3. From a Visual Studio Command Prompt, go into lpng143 and run

nmake -f scripts\makefile.vcwin32

This should produce libpng.lib.

Building tvreg with JPEG and PNG support Once the libraries are built, tvreg can be
compiled with JPEG and/or PNG support by adjusting tvreg’s makefile. Uncomment and edit
the lines at the top of tvreg\makefile.vc to reflect the locations of libjpeg, libpng, and zlib:

# Uncomment and edit the following lines for JPEG support.

LIBJPEG_DIR = "C:/libs/jpeg-8b"

LIBJPEG_INCLUDE = -I$(LIBJPEG_DIR)

LIBJPEG_LIB = $(LIBJPEG_DIR)/libjpeg.lib

# Uncomment and edit the following lines for PNG support.

ZLIB_DIR = "C:/libs/zlib"

ZLIB_INCLUDE = -I$(ZLIB_DIR)

ZLIB_LIB = $(ZLIB_DIR)/zlib.lib

LIBPNG_DIR = "C:/libs/lpng143"

LIBPNG_INCLUDE = -I$(LIBPNG_DIR)

LIBPNG_LIB = $(LIBPNG_DIR)/libpng.lib

The makefile will automatically add the corresponding preprocessor symbols based on which
libraries are defined. From a Visual Studio Command Prompt, compile with

nmake -f makefile.vc

7.3 MATLAB MEX

For Matlab use, compiling is not required, however, the main computational components can
be compiled as MEX functions to significantly improve performance. If your system has a C
compiler and MEX has been configured to use it, then the functions can be compiled by running
the included function compile mex from the Matlab console,

>> compile mex

If MEX has not been configured, run mex -setup on the Matlab console. MEX will try to
detect compilers on your system and configure for them automatically. For more information, see

http://www.mathworks.com/support/tech-notes/1600/1605.html

or help mex. In case compiling MEX is not possible, (slower) M-code implementation is also
included. Matlab automatically uses the MEX versions if they are compiled and falls back to
the M-code versions if not.
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FFTW

Compiling the MEX functions requires the FFTW3 library (http://www.fftw.org). For most
Linux distributions, this library is available through the package management system with the
name libfftw3-dev or similar. On Mac OSX, the library can be obtained through Fink.

Under Windows, the following instructions have been successful with Microsoft Visual C++
(MSVC). First download the precompiled Windows .dll files for FFTW from

http://www.fftw.org/install/windows.html

Open a Visual Studio Command Prompt by selecting Start Menu→ Programs→Microsoft Visual
Studio→ Visual Studio Tools→ Visual Studio Command Prompt. Then, navigate to the FFTW
DLL files and run the commands

lib /def:libfftw3-3.def
lib /def:libfftw3f-3.def
lib /def:libfftw3l-3.def

which should produce three files with .lib extension. Copy the FFTW DLL files into the folder
containing the tvreg files (or anywhere else in the Matlab path).

Next, edit the lines at the top of compile mex.m to tell MEX where to find the FFTW header
file fftw3.h and the FFTW .lib files. On my system, I put these files in a folder D:\libs\fftw,
so the configuration is

% Configure linking with the FFTW3 library (http://www.fftw.org)
% If FFTW3 is not in MEX's search path, use the following variables. Set
% "libfftw3include" to the location of fftw3.h,
% "libfftw3" compiler options for linking with libfftw3
% "libfftw3f" compiler options for linking with libfftw3f
libfftw3include = '"D:\libs\fftw"';
libfftw3 = '"D:\libs\fftw\libfftw3−3.lib"';
libfftw3f = '"D:\libs\fftw\libfftw3f−3.lib"';

I have enclosed the path names in double quotes, this is required if a path contains spaces. Run
compile mex to compile the MEX functions.

Troubleshooting

� Cannot open include file: 'fftw3.h'

Set variable libfftw3include in compile mex.m to the directory containing fftw3.h.

� unresolved external symbol utIsInterruptPending

Edit the libut configuration in compile mex.m. Alternatively, set matlabctrlc = false to
disable the Ctrl-C detection discussed below.

� (Windows) unresolved external symbol imp fftw plan many r2r

There is a problem linking with FFTW. Make sure that the variables libfftw3 and libfftw3f
in compile mex.m are set to the locations of the FFTW .lib files. For more help, see

http://www.fftw.org/install/windows.html

35



� (Windows) Invalid MEX−file 'tvreg.mexw32'

Copy the FFTW DLL files into the folder containing the tvreg files.

Ctrl-C detection

Matlab MEX has an unfortunate limitation: there is currently no official method for handling
Ctrl-C correctly in a MEX function.

Normally, the keypress Ctrl-C should stop the program. However, if the keypress occurs during
the execution of a MEX function, then Matlab does not terminate the MEX function, nor is
there an official method that the MEX function can use to detect that Ctrl-C has been signaled.
Worse yet, callbacks called from the MEX function (with mexCallMATLAB) will still happen, but
may produce strange results and run slowly.

tvreg uses the undocumented utIsInterruptPending function to detect and abort compu-
tation when Ctrl-C is pressed [36]. This should allow Ctrl-C to work as expected. However, in
case this method causes problems, Ctrl-C detection can be disabled. This is done by changing
the matlabctrlc variable in compile mex.m to false.

Thanks

I have received much positive feedback and encouragement as a result of the tvreg project, which
has led to many interesting discussions. Thanks to everyone for your support!
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