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Abstract—Demosaicing is the problem where, given a color
image that has been subsampled by a color filter array, to
interpolate the complete color information at each pixel. Many
demosaicing methods adapt the interpolation according to esti-
mated edge orientations. However, while the accuracy of these
orientations is important for success, they are difficult to estimate
from the mosaiced image. This paper extends contour stencils, a
method for estimating image contours based on total variation
along curves, to estimating contour orientations directly on
mosaiced images. A method for demosaicing using these contour
orientation estimates is proposed and compared with existing
methods. The proposed demosaicing is performed as an energy
minimization, using a graph regularization adapted according to
the orientation estimates.

Index Terms—demosaicing, total variation, orientation estima-
tion

I. INTRODUCTION

A mosaiced image is an image where the color channels

have been subsampled such that only one color component

is known at each pixel location. Most digital cameras capture

mosaiced images, where incoming light is filtered with a Bayer

color filter array (CFA) [1] to allow only red, green, or blue

to pass through to each photosensor (see Fig. 1). To obtain

full color information, the other color components must be

interpolated from the neighboring pixels. This interpolation is

called demosaicing (or demosaicking), which is also known

as CFA interpolation or color reconstruction.

As proposed by Cok [2], many methods for demosaicing

focus first on interpolating the green channel and then use

the result to guide the interpolation of the red and blue

channels. Alternatively, there are iterative methods which start

from an initial interpolation and iteratively adjust all three

channels [3]–[5].

A key challenge in demosaicing is that as a consequence

of the mosaicing the channels become aliased. In order to

overcome this, most methods impose (implicitly or explicitly)

correlation between the color channels, for example, by en-

suring that the differences (r − g) and (b − g) are smooth.

Most methods additionally have some form of edge adaptivity
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Fig. 1. The Bayer color filter array [1].

to guide the interpolation. A survey of demosaicing methods

is given in [6].

In this paper, we investigate particularly methods for infer-

ring the local image geometry from the mosaiced data.

II. ORIENTATION ESTIMATES IN DEMOSAICING

This section discusses existing methods for edge orientation

estimation used in demosaicing. The red, green, and blue color

intensities at pixel location (i, j) are denoted by ri,j , gi,j , bi,j .

A. Laroche–Prescott

Laroche and Prescott [7] were among the first to use an

edge-adaptive interpolation strategy. At a red pixel location

(and similarly for blue), second-order central differences in

the horizontal vertical directions:

Dh = |ri−2,j − 2ri,j + ri+2,j | ,
Dv = |ri,j−2 − 2ri,j + ri,j+2| .

(1)

Depending on which magnitude is smaller, the green value gi,j

is then interpolated either horizontally as 1
2 (gi−1,j + gi+1,j)

or vertically as 1
2 (gi,j−1 + gi,j+1).

B. Hibbard

Hibbard [8] proposed to use instead first-order central

differences in the green channel,

Dh = |gi−1,j − gi+1,j | ,
Dv = |gi,j−1 − gi,j+1| ,

(2)

and gi,j is then interpolated as in Laroche–Prescott. Hibbard’s

method is better localized than Laroche–Prescott and is usually

more accurate (see section IV-C).
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C. Hamilton–Adams

Hamilton and Adams [9] added cross-channel corrections

to Hibbard’s method. At a red pixel location, the method

computes the sum of (1) and (2)

Dh = |gi−1,j − gi+1,j | + |ri−2,j − 2ri,j + ri+2,j | ,
Dv = |gi,j−1 − gi,j+1| + |ri,j−2 − 2ri,j + ri,j+2| .

(3)

Interpolation is then performed using either the horizontal or

vertical neighbors depending on which of these two magni-

tudes is smaller. If Dh < Dv , then gi,j is interpolated as

gi,j = 1
2 (gi−1,j + gi+1,j) − 1

4 (ri−2,j − 2ri,j + ri+2,j). (4)

Hamilton–Adams is visually a significant improvement over

Hibbard’s method yet maintains low computational cost. For

these reasons, many methods use Hamilton–Adams as an

initialization and then apply additional steps to refine the

result [3]–[5], [10], [11].

III. CONTOUR STENCILS

Contour stencils are a method for estimating image contours

based on total variation (TV) along curves [12]–[15]. Given

an image u and a smooth simple curve C, define the total

variation along C as

‖u‖TV(C) := sup
(ti)

∑

i

∣

∣u
(

γ(ti+1)
)

− u
(

γ(ti)
)∣

∣ , (5)

where γ : [0, T ] → C parameterizes C and the supremum is

over all finite (ti), 0 = t0 < t1 < · · · < tN = T . If u is

differentiable,

‖u‖TV(C) =

∫ T

0

∣

∣

∂
∂t u

(

γ(t)
)∣

∣ dt. (6)

If C happens to coincide with an image contour, then

‖u‖TV(C) = 0. In the other direction, a small total variation

along C suggests that C is approximately a contour. The

strategy is to estimate contours by identifying curves with

small TV.

A. Discretization

Total variation along curves can be discretized as a sum

of absolute differences. A contour stencil is a function S :
Z

2 × Z
2 → R describing weighted edges approximating the

curve C, and the stencil TV is computed as

‖u‖TV(C) ≈
∑

m,n∈Z2

S(m, n) |u(m) − u(n)| . (7)

It is useful to consider the TV estimate along translations of

the same curve, ‖u‖TV(C+k). The stencil TV at pixel k is

defined as

(S ⋆ [u])(k) :=
∑

m,n∈Z2

S(m, n) |u(k + m) − u(k + n)| . (8)

To make a local estimate of the image contours about k,

the stencil yielding the smallest TV is identified from among

a set of candidate stencils,

S⋆(k) = arg min
S∈Σ

(S ⋆ [u])(k). (9)
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Fig. 2. An example stencil set of line-shaped stencils, where the edge weights
S(m, n) are denoted by superscripts α, β, δ, γ. The stencils distinguish 8
orientations.

Fig. 3. A contour stencil set designed by minimizing (13). The features are
shown as images with the corresponding stencil superimposed where an edge
is drawn if Sj(m, n) = 1.

Stencil S⋆(k) is called the best-fitting stencil, and it provides

a model of the underlying contours. Fig. 2 shows an example

stencil set Σ.

B. Stencil Design

The candidate stencils Σ can be chosen from the point of

view of distinguishing different features. Let f1, . . . , fJ , f j :
R

2 → R, be a set of features, for example linear functions

with different orientations,

f j(x) = x1 sin 1
J πj − x2 cos 1

J πj. (10)

The goal is to design stencils Σ = {S1, . . . ,SJ} such that Sj

is the best-fitting stencil on feature f j . That is, the stencils

should satisfy

(Sj ⋆ [f j ])(0) < (Si ⋆ [f j ])(0) ∀i 6= j (11)

or equivalently
(

(Sj − Si) ⋆ [f j ]
)

(0) < 0 ∀i 6= j. (12)

A simple method to approximate condition (12) is to design

the stencils as






















arg min
S1,...,SJ

J
∑

i=1

J
∑

j=1

(

(Sj − Si) ⋆ [f j ]
)

(0)

subject to 0 ≤ Sj(m, n) ≤ 1 (m, n) ∈ E ,

Sj(m, n) = 0 otherwise,

(13)

where E is an allowed set of edges,

E =
{

(m, n) ∈ Z
2 × Z

2 :

‖m‖ ≤ R, ‖n‖ ≤ R,m ∈ N (n)
} (14)



and N (n) are the eight adjacent neighbors of n. These

constraints localize the stencils to a disk of radius R and only

allow edges between neighboring pixels. The minimization has

a closed-form solution

Sj(m, n) =











1 if (m, n) ∈ E and |f j(m) − f j(n)|
< 1

J

∑J
i=1|f i(m) − f i(n)|,

0 otherwise.

(15)

Since the minimization does not guarantee that
(

(Sj − Si) ⋆
[f j ]

)

(0) < 0, the solution should be verified. Fig. 3 shows an

example using the line shaped features (10). The features need

not be linear, for example (13) can also design corner-shaped

contour stencils.

The stencil design (13) is effective for selecting the support

of the stencil edges, but the binary-valued edge weights it

produces are too crude to use directly. The weights must be

normalized so that they are compared fairly in (9). For the

stencil set in Fig. 2, the weights were selected to optimize the

approximation of rotational invariance [14].

IV. MOSAICED CONTOUR STENCILS

For demosaicing, we would like to apply contour stencils

directly on the mosaiced image data. This is possible by

observing a key difference: absolute difference is meaningful

only between samples of the same color channel.

Let f be the observed mosaiced data represented as a flat

2D array,

fi,j =











ri,j if i and j are both even,

bi,j if i and j are both odd,

gi,j otherwise.

(16)

We consider a variation estimate of the form

(S ⋆ [f ]) :=
∑

m,n∈Z2

S(m, n) |fm − fn| . (17)

A. Stencil Design

Stencils should have nonzero edges S(m, n) 6= 0 only

where m and n are nearby locations in the same channel. We

impose this requirement by adjusting the notion of neighbors

N (n) in (14). For the Bayer CFA, the neighbors depend on

whether n is a green pixel location:

Ñ (n) = {m : ‖m − n‖ =
√

2 or 2} if n ∈ green ,

Ñ (n) = {m : ‖m − n‖ = 2 or 2
√

2} if n 6∈ green .
(18)

Fig. 4 shows stencils designed by (13) for eight oriented

linear features (10) on the Bayer CFA. The design is restricted

to a disk-shaped support of radius
√

5.

Another peculiarity is that mosaicing is not shift-invariant,

but for periodic CFAs it is invariant under shifts by multiples

of the period. There are two distinct cases for contour stencils

on the Bayer CFA: one where the center pixel is green and

another where the center pixel is red or blue. The top row of

Fig. 4 shows stencils centered on green pixels in a blue row;

for green pixels in red rows, the roles of red and blue are

exchanged.

Centered on a green pixel

Axially-oriented Diagonally-oriented π
8

-oriented

Centered on a red pixel (similarly for blue)

Axially-oriented Diagonally-oriented π
8

-oriented

Fig. 4. Contour stencils designed by (13) for Bayer mosaiced data. Similarly
by rotations of these stencils, 8 different orientations are distinguished.

B. Stencil Weighting

The stencils need to be reweighted so that they are compared

fairly in the stencil selection (9). We denote an unnormalized

stencil by tilde S̃. We define f(x) = x1 sin θ − x2 cos θ and

normalize such that
∣

∣θ − π
8 j

∣

∣ < π
16 =⇒ S π

8
j = arg min

S∈Σ
(S ⋆ [f ]). (19)

For the unnormalized axial and diagonal stencils,

(S̃0 ⋆ [f ]) = 22 |sin θ| , (20a)

(S̃ π

4 ⋆ [f ]) = 14
√

2
∣

∣sin(θ − π
4 )

∣

∣ , (20b)

(S̃ π

2 ⋆ [f ]) = 22
∣

∣sin(θ − π
2 )

∣

∣ , (20c)

(S̃ 3π

4 ⋆ [f ]) = 14
√

2
∣

∣sin(θ − 3π
4 )

∣

∣ . (20d)

For these stencils, (S̃α ⋆ [f ]) is symmetric in θ about the

point θ = α. However, for the stencils S̃ π

8
j for odd j, the

unnormalized stencils are not symmetric about π
8 j. To obtain

symmetry, we set S̃ π

8 = S̃0 + µS̃ π

4 with

µ =
22

14(1 + tan π
8 )

(21)

such that (S̃ π

8 ⋆ [f ]) is proportional to cos(θ − π
8 ),

The axial and diagonal stencils are normalized by their

weighted arc length,

Sα = S̃α/|S̃α|, α = 0, π
4 , π

2 , 3π
4 ,

|S̃| :=
∑

m,n∈Z2

S̃(m, n) ‖m − n‖ . (22)

For S̃ π

8 , we normalize as S π

8 = S̃ π

8 /w with

w = 22
(

1 + 1√
2
(cot π

16 − 1)
)

(23)

such that (S0 ⋆ [f ]) = (S π

8 ⋆ [f ]) when θ = π
16 . With these

normalized stencil weights, the stencil set satisfies the stencil
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Fig. 6. Comparison of orientations estimated by Laroche–Prescott, Hibbard,
Hamilton–Adams, and mosaiced contour stencils.

TABLE I
ORIENTATION ESTIMATE ACCURACIES FOR FIG. 6

Method % Accurate Average Error

Laroche–Prescott 53.33% 0.2090π
Hibbard 55.83% 0.1995π
Hamilton–Adams 56.25% 0.1990π
Mosaiced Contour Stencils 88.27% 0.1167π

design condition (11) for linear features at eight orientations

and approximates rotational invariance (19). Fig. 5 shows the

normalized stencil total variations (S π

8
j ⋆ [f ]) vs. θ.

C. Comparison

We compare the proposed mosaiced contour stencils with

the orientation estimation methods of Laroche and Prescott [7],

Hibbard [8], and Hamilton and Adams [9].

A grayscale synthetic image is mosaiced with the Bayer

CFA as in Fig. 1. Each method is applied to the mosaiced

image to compute estimated orientations θi,j . Fig. 6 shows the

Hamilton–Adams Mosaiced Contour Stencils

Fig. 7. Orientations estimated by Hamilton–Adams and mosaiced contour
stencils on a crop from image 5 of the Kodak Image Suite.

estimated orientations superimposed on the full unmosaiced

image. To avoid boundary effects, a margin of 4 pixels is

removed. The lines are colored to visualize accuracy, with blue

indicating correct detections and red indicating errors. For the

contour stencils, shades of purple depict the error magnitude.

The Laroche–Prescott, Hibbard, and Hamilton–Adams

methods only define orientations at red and blue pixel loca-

tions. Additionally, the orientation is considered undefined if

the detection is ambiguous (e.g., Dh = Dv).

Denoting by D the set of pixels where orientation estimates

are defined, Table I compares the results quantitatively with

% Accurate := 100
#

{

(i, j) ∈ D : ei,j < π
4

}

#(D)
, (24)

Average Error :=
1

#(D)

∑

(i,j)∈D
ei,j , (25)

where #(·) denotes cardinality and ei,j = |θi,j − θexact
i,j | is the

angular distance from the the exact orientation at (i, j).

Fig. 7 compares Hamilton–Adams and mosaiced contour

stencils on natural images. The methods are applied to a mo-

saiced crop of image 5 from the Kodak Image Suite [16]. The

orientations estimated by the mosaiced contour stencils follow

to the underlying image structure much more accurately.

These comparisons show that the mosaiced contour stencils

estimates have finer angular precision, allowing more accurate

approximation of curved features and edges with non-axial

orientation. Additionally, the contour stencils estimates are

defined at every pixel location, providing an orientation map

with finer spatial resolution.

V. DEMOSAICING

A demosaicing method can be designed from two compo-

nents: a method for detecting image structure and a method

for interpolation according to the detected structure. These

components are modular as any detection method can be

used to guide any interpolation method that understands the

structure information. To show the potential of mosaiced

contour stencils for the detection, this section develops a

simple interpolation method that is guided by the stencils.
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A. Energy Minimization Model

Let f be the input mosaiced image and let Ωk denote

the pixel locations where the kth channel is known, k ∈
{R,G, B}. Similar to the interpolation method proposed in

[13], we consider demosaicing using a graph regulariza-

tion [17],






























arg min
u

∑

m

(

∑

n

(

wm,n‖um − un‖L

)2
)1/2

+ α
∑

m

(

∑

n

(

wm,n‖um − un‖C

)2
)1/2

subject to uk
n = fn, n ∈ Ωk, k ∈ {R,G, B},

(26)

where ‖·‖Y and ‖·‖C are seminorms in the color space

suggested by Condat [18],

‖x‖L := 1√
3
|xR + xG + xB |, (27)

‖x‖C :=
√

1
2 (xR − xB)2 + 1

6 (xR − 2xG + xB)2. (28)

The first term of (26) regularizes the luminance while the

second term regularizes chrominance. The parameter α on

the second term balances between luminance and chrominance

regularization. A larger value of α reduces color artifacts but

increases zipper artifacts.

For each pixel m, graph weights winit
m,n between m and its

adjacent neighbors n are first defined according to the best-

fitting mosaiced contour stencil as shown in Fig. 8 and zero

for all other n. To ensure that the graph is connected, a small

value ǫ is added to all winit
m,n where m and n are axial or

diagonal neighbors,

wreg
m,n := winit

m,n + ǫ✶{m∈N (n)}. (29)

Finally, the weights are symmetrized and spatially filtered,

wm,n :=
∑

m′

(wreg
m′,n + wreg

n,m′) exp
(

−‖m−m′‖2

2σ2

)

. (30)

B. Results

This section shows demosaicing results with the energy

minimization (26) using the parameters α = 1.7, ǫ = 0.2,

σ = 0.5. The minimization is solved by the split Bregman

method [19].

All results were produced by the following procedure. We

simulate a mosaic by subsampling a color image with a red

location in the upper-left corner as in Fig. 1. To avoid boundary

Exact Hamilton–Adams Zhang–Wu
MSE 79.71 MSE 106.30

Chung–Chan Buades et al. Proposed
MSE 111.82 MSE 93.00 MSE 74.81

Fig. 9. A test with strong color discontinuities. Photograph by Thomas G.

Barnes, U.S. Fish and Wildlife Service.

Exact Hamilton–Adams Zhang–Wu
MSE 241.43 MSE 221.97

Chung–Chan Buades et al. Proposed
MSE 221.23 MSE 220.94 MSE 205.05

Fig. 10. A test with texture: comparison on a crop of the mandrill image.

effects, the image borders of the mosaic are padded with 16

pixels using whole-sample symmetric extension.

We compare with bilinear, Hamilton and Adams [9], Gun-

turk et al. [3], Zhang and Wu [11], Chung and Chan [20],

Lian et al. [21], and Buades et al. [5] using the default

parameters suggested in the papers. After removing the 16-

pixel padding, the mean squared error (MSE) is computed in

RGB coordinates relative to the intensity range [0, 255].
Fig. 9 tests the methods on an image with strong color

discontinuities and curving boundaries. Most methods produce



Exact Hamilton–Adams Zhang–Wu
MSE 40.56 MSE 17.73

Chung–Chan Buades et al. Proposed
MSE 14.61 MSE 20.51 MSE 20.77

Fig. 11. A test with aliasing: comparison on a crop of image 1 from the
Kodak Image Suite.

TABLE II
AVERAGE MSE ON THE KODAK AND IMAX IMAGES.

Method Kodak IMAX

Bilinear 83.70 45.71
Hamilton–Adams [9] 16.23 35.37
Gunturk et al. [3] 9.42 60.85
Zhang–Wu [11] 7.66 38.88
Chung–Chan [20] 7.75 41.90
Lian et al. [21] 8.70 36.85
Buades et al. [5] 12.00 36.00
Proposed 28.36 30.09

significant zipper artifacts.

Fig. 10 compares how the methods handle texture with

a crop from the mandrill image. The texture and intricate

geometry of the whiskers make this test very challenging.

Fig. 11 tests how the methods handle aliasing. The test

image contains a pattern approaching the Nyquist limit so

that mosaicing severely aliases the red and blue channels. The

proposed method works reasonably well for such images with

limited color and zipper artifacts.

Table II shows the MSE averages over the Kodak Image

Suite [16] and the IMAX images introduced in [6]. The Kodak

and IMAX images are quite different: the IMAX images are

statistically sharper and more colorful [5]. The table shows that

while the proposed method is relatively weak on the Kodak

images, it has the best performance on the IMAX images.

VI. CONCLUSION

We have developed a new method for estimating edge

orientations on mosaiced image data using contour stencils.

The contour stencil method is significantly more reliable and

provides greater angular resolution than existing methods.

We applied the contour stencil orientations in designing an

effective edge-adaptive demosaicing method.
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