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ABSTRACT

We introduce “contour stencils” as a simple method for detecting the local orientation of image contours and
apply this detection to image zooming. Our approach is motivated by the total variation along curves: small total
variation along a candidate curve suggests that this curve is a good approximation to the contours. Furthermore,
a relationship is shown between interpolation error and total variation. The contour stencil detection is used to
develop two image zooming methods. The first one, “contour stencil interpolation,” is simple and computationally
efficient, yet competitive in a comparison against existing methods. The second method approaches zooming
as an inverse problem, using a graph regularization where the graph is determined by contour stencil detection.
Both methods extend naturally to vector-valued data and are demonstrated for grayscale and color images.
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1. INTRODUCTION

Image zooming (also called image scaling and single-frame super-resolution) is the problem of increasing the
resolution of a given image to higher resolution. Image interpolation refers to the special case when the process
is reversible by subsampling.

Three important objectives in image zooming are smoothness order, step response, and directional selectiv-
ity. Traditional interpolation methods focus on smoothness order, the highest polynomial order the method can
reproduce. In spite of smoothness, the method’s behavior near an edge, the step response, should have minimal
blurring and minimal overshoots. The method’s directional selectivity is the number of directions it can distin-
guish, which enables it to handle edges of different angles without producing jagged artifacts. And, contrary to
all other objectives, the method should be simple and computationally efficient.

1.1 Recent Work

Recent research shows many ideas on how to approach the challenging problem of image zooming. We briefly
describe three prominent categories: PDE-based, patch-based, and edge-directed methods.

1.1.1 PDE-based

PDE-based methods can be further categorized as derived from a minimization model or designed directly as
a diffusion process. Total variation (TV) regularization, introduced by Rudin, Osher, and Fatemi,1 has been
successful in many image processing problems. The technique is to minimize the total variation ‖u‖TV :=
∫

Ω
|∇u| dx with a constraint according to the goal of the problem. Malgouyres and Guichard2 posed image

zooming as
min

u∈BV (Ω)
‖u‖TV subject to sample(h ∗ u) = v.

Similarly, Chan and Shen3 applied TV regularization to image inpainting, where interpolation is a special case.

Applying gradient descent to a minimization model yields a corresponding diffusion process. Gradient de-
scent on ‖u‖TV yields the “TV-flow” anisotropic diffusion ∂tu = div(∇u/ |∇u|). Rather than beginning with a
minimization, some methods are designed directly as a diffusion process. Not every diffusion process corresponds
to a minimization; this setting is more general. For image zooming, several proposed diffusions are

Bertalmı́o, Bertozzi, and Sapiro4 ∂tu = ∇u⊥ · ∇∆u + div
(

g(|∇u|)∇u
)

Belahmidi and Guichard5 ∂tu = ∇u⊥

|∇u| · ∇2u · ∇u⊥

|∇u| + g(|∇u|) ∇u
|∇u| · ∇2u · ∇u

|∇u|

Roussos and Maragos6 ∂tu = div
(

T
(

Jρ(∇uσ)
)

∇u
)

where in the first and second methods, g is an edge-stopping function, and in the third method, T
(

Jρ(∇uσ)
)

is
a tensor constructed from the eigenvalues and eigenvectors of the 2× 2 structure tensor.



1.1.2 Patch-based

The nonlocal means method of Buades et al.7 has inspired several methods.8–10 These methods use the nonlocal
means weights to identify similar patches in the image and combine them to estimate a high resolution patch.

Freeman et al.11 and similarly other “example-based” methods12,13 performed image zooming using a large
database of image patches of low resolution and high resolution pairs. For each patch in a given low resolution
image, they search the database for the corresponding high resolution patch.

Fractal image zooming is a patch-based technique derived from fractal image compression, where an image
is compactly represented by identifying its self-similar structures.14,15 The given image is first encoded as an
iterated function system (IFS), a contraction that maps patches to similar patches such that the image is the
fixed point of the IFS. The IFS is “resolution independent” in that the mapping can be applied at any resolution,
so the original image can be zoomed by fixed point iteration at the desired resolution.

1.1.3 Edge-directed

While PDE- and patch-based methods produce high-quality results, they are often computationally expensive.
In PDE-based methods, the result improves as it approaches steady state, but often the timestep must be
restrictively small for stability and many steps are needed. In patch-based methods, expanding the search for
similar patches usually improves the results. Naturally, they tend to accept extreme run times.

In contrast, edge-directed methods are often designed from the outset for computational efficiency. Edge-
directed methods16–20 try to interpolate along the direction of edges rather than across them, producing inter-
polations with sharp edges.

The difficulty in edge directed methods is in how they determine the direction of the edge, and this is primarily
where they differ. Stepin20 compares a pixel with each of its eight neighbors and decides by a threshold whether
each neighbor is alike or different. For each of the 256 possible outcomes, the method assigns a tailored linear
formula to interpolate the neighborhood.

1.2 Simplifying Objectives: Contour Consistency

Smoothness, step response, directional selectivity, efficiency—these objectives cannot be treated independently;
they effect each other. In linear interpolation for example, the objectives of high smoothness order and sharp step
response are in direct opposition. We simplify these objectives into a single objective called contour consistency :
the local orientations of the interpolated contours should match and no new contour lines should be created.
Contours in the interpolated image should be “consistent” with those in the given image.

Contour consistency implies that edges are interpolated without overshoots or jagged edges (step response
and directional selectivity) and that constants are preserved, which is just enough constant order smoothness.

Image zooming motivated by contours has been successful in previous work. Jiang et al.17 performed interpo-
lation by solving two minimization problems. The first estimates the local contour orientations, and the second
applies TV regularization to interpolate the image along the detected orientations. In the method of Luong et
al.,21 they begin by zooming the image with a linear method, then attempt to remove the artifacts. They pay
special attention to the contours. TV flow is used to smooth out the contours, thereby removing jagged edge
artifacts, and then a contour-preserving local contrast enhancement is used to sharpen blurry edges.

1.3 Outline

We develop two contour-based image zooming methods that approximate this objective. Section 2 develops an
interpolation method, that is, approximately solving the degradation model

v = sample(u) (1)

for u, where v is the given image. Section 3 develops a second method adding a point spread function (PSF) h,

v = sample(h ∗ u). (2)

The interpolation method is more computationally efficient, requiring only a few dozen operations per pixel. The
second method produces sharper results than the first, at the computational cost of solving a sparse symmetric
positive definite linear system. Section 4 compares the proposed methods with several existing methods.



2. CONTOUR STENCIL INTERPOLATION

This section describes the contour stencil interpolation method. Given an image u ∈ C1(R2), denote by TV(C)
its total variation along a smooth curve C,

TV(C) :=

∫ T

0

∣

∣

∂
∂t

u
(

γ(t)
)∣

∣ dt where γ : [0, T ]→ C. (3)

Total variation has a relationship with interpolation error.

Theorem 2.1. Consider the approximation

u(x) ≈ û(x) = (1− λ)u(a) + λu(b)

a

b

x

C1

C2

and let C = C1 ∪ C2 be a smooth curve passing through a, x, and b. If u is differentiable along C, then the
approximation error is bounded by

|û(x)− u(x)| ≤ max
{

|1− λ| , |λ|
}

TV(C) .

Proof. We have

|u(a)− u(x)| =
∣

∣

∣

∣

∫

C1

∂
∂t

u
(

γ(t)
)

dt

∣

∣

∣

∣

≤ TV(C1) ,

and similarly |u(b)− u(x)| ≤ TV(C2). Combining these bounds yields the result.

The proposed approach to interpolation comes directly from Thm. 2.1: minimize TV(C). If TV(C) is the
smallest among a set of candidate curves, then the interpolation error has the smallest bound when interpolating
along C. Next, we address how to estimate contours, which is where the “contour stencils” will come in.

2.1 Contour Stencils

Let v : Λ→ R be the given image where vi,j denotes the value of the (i, j)th pixel. Define the (i, j)th cell as the
square whose corners correspond to vi,j , vi+1,j , vi,j+1, vi+1,j+1. For each cell, we want to find a curve C passing
through the cell such that TV(C) is small.

A curve may be represented as a sequence of pixels (αn) ∈ Λ, and total variation may be discretized as
∑

n

|v(αn+1)− v(αn)| ≈ TV(C) . (4)

Theorem 2.2. Let C and C̃ be smooth curves parameterized by γ : [0, T ]→ C and γ̃ : [0, T ]→ C̃. Then if u is
twice continuously differentiable,

∣

∣

∣
TV(C̃)− TV(C)

∣

∣

∣
≤

∫ T

0

(

M1 |γ̃′(t)− γ′(t)|+ M2 |γ̃(t)− γ(t)|
)

dt

where |·| over a vector quantity denotes ℓ2 norm.

Proof. Let Γ(t, s) = (1− s)γ(t) + sγ̃(t). Then

∣

∣

∣
TV(C̃)− TV(C)

∣

∣

∣
≤

∫ T

0

∣

∣

∣

∣

∣

∂
∂t

u
(

γ̃(t)
)∣

∣−
∣

∣

∂
∂t

u
(

γ(t)
)∣

∣

∣

∣

∣
dt

≤
∫ T

0

∣

∣

∣

∂
∂t

u
(

γ̃(t)
)

− ∂
∂t

u
(

γ(t)
)

∣

∣

∣
dt

≤
∫ T

0

∣

∣

∣

∣

∫ 1

0

∂2

∂t∂s
u
(

Γ(t, s)
)

ds

∣

∣

∣

∣

dt

=

∫ T

0

∣

∣

∣

∣

∫ 1

0

∇u · (γ̃′ − γ′) + Γt · ∇2u · (γ̃ − γ) ds

∣

∣

∣

∣

dt

≤
∫ T

0

(

M1 |γ̃′(t)− γ′(t)|+ M2 |γ̃(t)− γ(t)|
)

dt



where M1 = max
t,s

∣

∣∇u
(

Γ(t, s)
)∣

∣, M2 = max
t,s

∣

∣∇2u · Γt

(

Γ(t, s), s
)∣

∣.

The theorem implies that nearby parallel curves have approximately the same TV. Observing this property,
the TV estimate (4) may be improved by averaging over several parallel curves.
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1 α = (i, j), β = (i + 1, j − 1),
4 α = (i, j + 1), β = (i + 1, j),
1 α = (i + 1, j + 1), β = (i, j + 2),
1 α = (i + 1, j + 1), β = (i + 2, j),
0 otherwise

Figure 1. An example contour stencil S.

Let S : Λ× Λ→ R
+ be a function describing weighted edges between pixels (that is, S(α, β) > 0 represents

an edge weight connecting pixels α, β ∈ Λ). We call S a contour stencil, and choose its nonzero edges such that
they approximate several parallel curves localized over a small patch of the image (see Fig. 1). Define the total
variation of S as

TV(S) := 1
|S|

∑

α,β∈Λ

S(α, β) |vα − vβ | , (5)

and |S| := ∑

α,β S(α, β) |xα − xβ |. For the contour stencil in Fig. 1, |S| = (1 + 1 + 4 + 1 + 1)
√

2 and

TV(S) = 1
|S|

(

|vi,j − vi−1,j+1|+ |vi,j − vi+1,j−1|
+ 4 |vi,j+1 − vi+1,j |

+ |vi+1,j+1 − vi,j+2|+ |vi+1,j+1 − vi+2,j |
)

.
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Figure 2. The 12 contour stencils used in the proposed method. Together they distinguish 8 directions.

Now we can find an estimate of the contours by comparing the total variations of different candidate stencils.
The proposed stencil set Σ is shown in Fig. 2. The best-fitting stencil is

S∗ = arg min
S∈Σ

TV(S). (6)

This stencil serves as a model of the underlying image contours. Since S∗ is the stencil with the smallest estimated
total variation, the estimated error bound is minimized when interpolating along its modeled contours:

|û(x)− u(x)| ≤ TV(C) ≈ TV(S∗) = min
S∈Σ

TV(S) . (7)

If the given image is noisy, spatially filtering TV(S) can improve the accuracy of the contour detection. Let
TVρ(S) = Gρ ∗ TV(S), where Gρ is a Gaussian with standard deviation ρ and the convolution is over Λ. Even
for clean images, light filtering can improve the results.

The rationale for choosing the stencil set is, first, the stencil selection should be invariant to axis reflections
and 90◦ rotations, and second, the support of the stencils should be as localized as possible. Let γ denote the
center of the (i, j)th cell, then define the radius of Σ as

ρ(Σ) = max
{

|γ − α| : S ∈ Σ, α ∈ supp(S)
}

,



where supp(S) ⊂ Λ denotes the support of stencil S. The support in the proposed stencil set (Fig. 2) is the

smallest possible radius (ρ ≈ 1.581) on which contour stencils can reliably distinguish more than two directions
(on the support , the horizontal and vertical directions can be detected).

Remark 1. The weights on the stencil edges have only a small effect on the detection. Results are similar if,
for example, all edges have the same weight. The choice of weights affects the results most where there is a near
tie in (6) for the minimum TV(S), that is, the weights can help where the detection gets confused.

Remark 2. The absolute value in the definitions (3) and (4) may be replaced by another metric. For color
images for example,

∥

∥~u1 − ~u2
∥

∥ =
∣

∣u1
red − u2

red

∣

∣ +
∣

∣u1
green − u2

green

∣

∣ +
∣

∣u1
blue
− u2

blue

∣

∣.

2.2 Interpolation Formulas

We now describe contour stencil interpolation, which takes inspiration from the one-dimensional Essentially
Non-Oscillatory (ENO) interpolation technique.22 In ENO, a piecewise polynomial interpolant is constructed in
such a way as to avoid oscillations near singularities. For each interval, several stencils are considered and the
one with the least divided difference is selected for interpolation. Similarly in our case, the TV(S), S ∈ Σ, test
how well the stencils fit the data, and we proceed using the best stencil as a model for the underlying function.

For the stencil set in Fig. 2, the following formulas give a simple way to do the interpolation. Filled circles
represent samples of v. The value of an interpolated node is the average of all incoming arrows.

For S∗i,j = , , and the

isotropic fallback, do standard
bilinear interpolation:

vi,j vi+1,j

vi,j+1 vi+1,j+1

N

S

W EX

N = 1

2
(vi,j + vi+1,j)

S = 1

2
(vi,j+1 + vi+1,j+1)

W = 1

2
(vi,j + vi,j+1)

E = 1

2
(vi+1,j + vi+1,j+1)

X = 1

4
(vi,j + vi+1,j + vi,j+1 + vi+1,j+1)

For S∗i,j = and similarly

for

vi,j vi+1,j

vi,j+1 vi+1,j+1

N

S

W EX

N = 1

2
(vi,j + vi+1,j)

S = 1

2
(vi,j+1 + vi+1,j+1)

W = 1

2
(vi,j + vi,j+1)

E = 1

2
(vi+1,j + vi+1,j+1)

X = 1

2
(vi,j+1 + vi+1,j)

For S∗i,j = and similarly for

, , and

vi,j vi+1,j

vi,j+1 vi+1,j+1

N

S

W EX

N = 1

2
(vi,j + vi+1,j)

S = 1

2
(vi,j+1 + vi+1,j+1)

X = W = E = 1

2
(vi,j+1 + vi+1,j)

For S∗i,j = and similarly for

, , and

vi,j vi+1,j

vi,j+1 vi+1,j+1

N

S

W EX

N = W = 1

2
(vi,j + vi+1,j)

S = E = 1

2
(vi,j+1 + vi+1,j+1)

X = 1

4
(vi,j + vi+1,j + vi,j+1 + vi+1,j+1)

In the typical case that an edge midpoint is shared between adjacent cells, its interpolated value is the average
of the two assigned values.



For example, if S∗i,j = and S∗i+1,j = , then

vi,j vi+1,j

vi,j+1 vi+1,j+1

vi+2,j

vi+2,j+1

N

S

W X

N ′

S′

E′X ′

M

E = 1

2
(vi,j+1 + vi+1,j)

W
′ = 1

2
(vi+1,j + vi+2,j)

M = 1

2
(E + W

′)

Again, these interpolation formulas are just a simple implementation of the guiding principle that values
should be interpolated along the contours. The same principle may be applied to derive interpolation formulas
for other stencils and interpolation factors other than 2.

The steps for contour stencil interpolation are the following for each cell of the input image: compute the
TV estimates (5), determine the best-fitting stencil S∗i,j , compute the interpolated pixels, and average shared
midpoint values. For efficient implementation, define the differences

DH
i,j = |vi,j − vi+1,j | , DA

i,j = |vi,j − vi+1,j+1| ,
DV

i,j = |vi,j − vi,j+1| , DB
i,j = |vi,j+1 − vi+1,j | ,

then the total variations TV(S) can be computed by adding the appropriate differences, and differences may be
reused between successive cells. If ρ = 0, the interpolation amounts to a few dozen operations per pixel.

Thanks to the contour stencils, the interpolation produces sharp edges and partially recovers oriented textures
(Fig. 3). All images are displayed with nearest-neighbor rendering such that individual pixels are visible.

Figure 3. Top row: input images. Bottom row: contour stencil interpolation by factor 2.



3. CONTOUR STENCIL ZOOMING

The previous sections developed contour stencils and the contour stencil interpolation method. Here we use
contour stencils again in a method that incorporates deconvolution as in degradation model (2). The advantage
of deconvolution is sharper results, but the penalties are higher computational costs and overshoot artifacts if
the PSF support is overestimated.

3.1 Graph Regularization

The method proposed here follows the graph regularization approach of Elmoataz et al.,23 which they conceived
for image denoising and segmentation and we adapt to image zooming. The high resolution image u is found as
the solution of

min
u

E(u) =
∑

α∈Λ

∑

β∈Λ

w(α, β) |uα − uβ |2 subject to ↓(h ∗ u) = v (8)

where w : Λ× Λ→ R
+ is a symmetric function defining a weighted graph on the pixels of u.

Suppose that h is identified as the lowpass filter of a wavelet (Appendix A addresses how to obtain such a
wavelet). Let Hv = ↓(h ∗ u) and let H̃, G, G̃ be the corresponding operators such that H̃H + G̃G = I. Then
the constraint can be eliminated: since ↓(h ∗ u) = v if and only if there exists d such that u = H̃v + G̃d, the
minimization is equivalent to the unconstrained minimization mind E(H̃v + G̃d).

We say the graph is connected if for any two pixels α, β there exists a finite sequence α = α0, α1, . . . , αN = β
in Λ such that w(αn, αn+1) > 0. If the graph is connected and finite, standard convex analysis shows that (8)
has a unique solution.

if S∗i,j = if S∗i,j = if S∗i,j = or
+i

+j
u2i,2j u2i+2,2j

u2i,2j+2

1 1

1 1

1 1

η

η

η

η
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η
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η η

η

η

η η

η

η

(and similarly otherwise)
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1

1

η η

η η

η η

Figure 4. Graph construction for contour stencil zooming. The values denote the edge weights w(α, β).

For each cell in the given image, edges are added to the graph depending on the best-fitting stencil S∗
i,j as

shown in Fig. 4. Most edges follow the flow of the detected contours. For regularity and to ensure the graph is
connected, a few edges with weight η link between adjacent contours. In the experiments we use η = 1/4.

3.2 Implementation

Let L denote the graph Laplacian (Lu)α :=
∑

β w(α, β)(uα − uβ), then the minimizer of (8) satisfies

(G̃∗LG̃)d = −G̃∗LH̃v. (9)

The matrix (G̃∗LG̃) is symmetric positive definite. If h has finite impulse response, then G̃ can be selected to
be sparse and hence (G̃∗LG̃) is also sparse. So the linear system is solved efficiently by conjugate gradients.

Figure 5 compares the proposed zooming method and Malgouyres’ TV minimization.2 Despite being based
on a quadratic minimization, edges with the proposed method are nevertheless sharp. Figure 6 shows a close-up
of the bear’s fur, where we can observe that the proposed method recovers the fur texture more accurately.



Original Input

TV (PSNR 25.7) Contour Stencil Zooming (PSNR 25.9)

Figure 5. The TV-based method of Malgouyres2 vs. contour stencil zooming. Photograph by Steve Hillebrand, U.S. Fish

and Wildlife Service.

Input TV Contour Stencil Zooming

Figure 6. Close-up view of Fig. 5.



3.3 Color Zooming

For color images (or any vector-valued data), stencil selection may be done jointly over all channels as described
in Remark 2. We find that the minimization (8) may be performed independently for each channel without
significant color artifacts.

Original Input

Contour Stencil Interpolation (PSNR 25.2) Contour Stencil Zooming (PSNR 25.4)

Figure 7. Color example of factor-2 zooming with the proposed methods. The stencil selection is done using the ℓ1 norm
in YCbCr space (see Remark 2).



4. COMPARISON

Figure 8 compares contour stencil interpolation and contour stencil zooming alongside the PDE diffusion method
of Roussos et al.,6 an implementation of IFS image scaling,24 and the edge directed method AQua-2 of Muresan.16

The stencil denoising parameter is ρ = 0.5 and the PSF h used is the tensor product of the filter 1+ 1
4 (z + z−1).

Input Roussos et al. IFS

AQua-2 Contour Stencil Interpolation Contour Stencil Zooming

Figure 8. Comparison with existing methods on cameraman.

Figure 9 compares the methods on a text image. This image, with its strongly oriented features in the line
strokes, is especially well-suited for the proposed contour-based methods.

Input Roussos et al. IFS

AQua-2 Contour Stencil Interpolation Contour Stencil Zooming

Figure 9. Comparison with existing methods on a text image.



5. CONCLUSIONS

To conclude, we consider strengths and weaknesses of the proposed approach.
Strengths
• Competing objectives are resolved by following the single objective of contour consistency (Sec. 1.2).

• Contour stencil selection minimizes an approximate bound of the interpolation error (Thm. 2.1).

• Contour stencil interpolation requires only a few dozen operations per pixel and can be parallelized. For
contour stencil zooming, the bottleneck computation is solving a sparse symmetric positive definite linear
system, which is relatively mild compared to most PDE- and patch-based methods.

• Visual quality is comparable to existing methods (Sec. 4).

Weaknesses, directions for future work
• The choice of stencil edge weights is ad hoc (Remark 1).

• Directional selectivity is limited to the directions represented in the stencil set.

• It is not clear how to extend to arbitrary scale factors or irregularly-sampled data.

APPENDIX A. CONSTRUCTING THE WAVELET

The constraint in minimization (8) may be eliminated if the PSF h is identified as the analysis lowpass filter of
a wavelet. For arbitrary h, this requires constructing a wavelet. (Or in the other direction, we could choose the
PSF h as the analysis lowpass filter of some existing wavelet.) Wavelets for this purpose can be designed using
the wavelet lifting scheme.25 As an example, we design wavelets for 5-tap symmetric PSFs.

Suppose that the PSF is the tensor product of a symmetric 5-tap filter

h(z) ∝ 1 + a(z + z−1) + b(z2 + z−2). (10)

To produce a wavelet that has (10) as its lowpass analysis filter, we begin with a generic lifting scheme
[

he(z) ge(z)
ho(z) go(z)

]

=

[

1 α(1 + z−1)
0 1

] [

1 0
β(z + 1) 1

] [

1 δ(1 + z−1)
0 1

]

yielding

h(z) ≡ he(z
2) + z−1ho(z

2)

= (1 + 2αβ) + β(z + z−1) + αβ(z2 + z−2).

Filter (10) is obtained with α = b/a and β = a/(1 − 2b). We choose δ = −(1 + 2α)/(2 + 4β + 8αβ) to ensure
that the wavelet has at least one vanishing moment.

In one dimension, the wavelet transform’s lifting scheme implementation is

Forward transform: s = Hx, d = Gx























x2n+1 ← x2n+1 +α(x2n+2 + x2n)
x2n ← x2n +β(x2n+1 + x2n−1)

x2n+1 ← x2n+1 +δ(x2n+2 + x2n)
(Hx)n = x2n

(Gx)n = x2n+1

Inverse transform: x = H̃s + G̃d























x2n ← sn

x2n+1 ← dn

x2n+1 ← x2n+1 −δ(x2n+2 + x2n)
x2n ← x2n −β(x2n+1 + x2n−1)

x2n+1 ← x2n+1 −α(x2n+2 + x2n)

Similarly, for the adjoint transform,

Forward transform adjoint: s = H̃∗x, d = G̃∗x























x2n ← x2n −α(x2n+1 + x2n−1)
x2n+1 ← x2n+1 −β(x2n+2 + x2n)

x2n ← x2n −δ(x2n+1 + x2n−1)

(H̃∗x)n = x2n

(G̃∗x)n = x2n+1

Inverse transform adjoint: x = H∗s + G∗d























x2n ← sn

x2n+1 ← dn

x2n ← x2n +δ(x2n+1 + x2n−1)
x2n+1 ← x2n+1 +β(x2n+2 + x2n)

x2n ← x2n +α(x2n+1 + x2n−1)

The wavelet is extended to two dimensions by the tensor product of the one dimensional transform.
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