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ABSTRACT

We first develop a simple method for detecting the local orientation of image contours and then use this detection
to design an edge-adaptive image interpolation strategy. The detection is based on total variation: small total
variation along a candidate curve implies that the image is approximately constant along that curve, which
suggests it is a good approximation to the contours. The proposed strategy is to measure the total variation over
a “contour stencil,” a set of parallel curves localized over a small patch in the image. This contour stencil detection
is used to design an edge-adaptive image interpolation strategy. The interpolation is computationally efficient,
operates robustly over a variety of image features, and performs competitively in a comparison against existing
methods. The method extends readily to vector-valued data and is demonstrated for color image interpolation.
Other applications of contour stencils are also discussed.

Keywords: Interpolation, contour stencils, total variation

1. INTRODUCTION

Digital multimedia frequently involves rescaling an image to another resolution. This task, called image zooming
(also known as image scaling and single-frame super-resolution), arises for example when viewing a digital image
and asking to “zoom in” for a closer look, or when rescaling a video to fullscreen view. Image interpolation refers
to the special case when the process is reversible by subsampling.

1.1 Recent Work

As an overview of recent image zooming methods, we briefly describe three prominent categories.

1.1.1 Identifying similar image patches

Several high-quality methods involve identifying similar image patches.

Freeman et al.1 and similarly other “example-based” methods2, 3 performed image zooming using a large
database of image patches of low resolution and high resolution pairs. For each patch in a given low resolution
image, they search the database for the corresponding high resolution patch. Jiji et al.4 performed a similar
process in the contourlet domain, where they identify similar patches of contourlet coefficients.

The idea in fractal image zooming5, 6 is to identify self-similar structures in an image to extrapolate the detail
to finer scales. The image is first encoded as an iterated function system (IFS), a contraction that maps patches
to similar patches such that the image is the fixed point of the IFS. Scalings of the original image are then
obtained by fixed point iteration of the IFS at the desired resolution.

Several methods7–9 have been inspired by the nonlocal means method10 for image noise reduction. These
methods use the nonlocal means weights to identify similar patches in the given image and combine them to
estimate a high resolution patch.

In all of these methods, expanding the search for similar patches usually improves the results. Thus they
compromise between speed and quality—or accept extreme run times.

1.1.2 PDE-based

Total variation (TV) based regularization, introduced by Rudin, Osher, and Fatemi,11 has found success in image
zooming as applied by Malgouyres and Guichard12 and Chan and Shen.13, 14
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The total variation of an image is ‖u‖TV :=
∫

|∇u|, where the gradient is interpreted in a distributional
sense. Malgouyres posed image zooming as an optimization problem for the minimum-TV image u that agrees
with the low-resolution v data,

û = arg min
u∈BV

‖u‖TV subject to sample(h ∗ u) = v.

The minimization may be solved by evolving a PDE on the image. Chan and Shen considered a similar opti-
mization problem for image inpainting, where image zooming is a special case.

Another TV-inspired PDE was applied by Luong et al.15 They begin by zooming the image with a linear
method, then attempt to remove the artifacts. As one step in this postprocessing, the TV-flow PDE is used to
smooth out jagged edges.

1.1.3 Edge-directed

Edge-directed methods16–20 try to interpolate along the direction of edges rather than across them, producing
interpolations with sharp edges. In contrast to the PDE- and patch-based methods, edge-directed methods are
often designed from the outset for computational efficiency.

The difficulty in edge directed methods is in how they determine the direction of the edge, and this is primarily
where they differ. Stepin20 compares a pixel with each of its eight neighbors and decides by a threshold whether
each neighbor is alike or different. For each of the 256 possible outcomes, the method assigns a tailored linear
formula to interpolate the neighborhood.

1.2 Outline

This work introduces contour stencil interpolation, a fast, edge-adaptive method for image interpolation.

• Section 2 defines the problem (§2.1) and a design objective in terms of the image contours (§2.2).

• Section 3 presents the contour stencil interpolation method: contour stencils are proposed (§3.1) as a
method for detecting contour orientations, then applied in developing the interpolation method (§3.2).
Section 3.3 discusses efficient implementation.

• Section 4 shows examples and a comparison against several state-of-the-art methods.

• Section 5 applies contour stencils in an image enhancement method.

2. FORMULATION

Like any design task, image scaling benefits from a mathematical statement of the problem and identifying
suitable objectives. Here we shall clarify a mission statement of our goals in designing an image scaling method.

2.1 Problem Model

The image interpolation problem is to solve
v = sample(u) (1)

for u, where v is the given image. Alternatively, sharper results are possible by solving the deconvolution problem

v = sample(h ∗ u) (2)

where h is the point spread function (PSF) of the imaging device. The choice of h can be problematic, however,
since overestimating the support of the PSF results in overshoot artifacts and for most applications the exact
PSF is unknown and spatially varying.

Moreover, deconvolution is generally more demanding—both computationally and conceptually—than inter-
polation. For this reason, we develop the proposed method as an interpolation with hopes of simplicity and
efficiency.
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2.2 Objectives

This work shall consider the following objectives.

Objective 1) Smoothness. In smooth regions, scaling should preserve low-order polynomials.

Objective 2) Step response. Edges should scale without excessive blurring or overshoots.

Objective 3) Directional selectivity. Edges of different angles should scale without becoming jagged.

Additionally, of course, any other artifacts should be visually tolerable, and the method must be computa-
tionally fast enough for the application.

The challenge with multiple objectives is how they should balance. For linear methods, Objective 1 is in
opposition with Objective 2. We simplify these objectives into the single objective that contours in the scaled
image should be “consistent” with those in the given image.

Objective) Contour consistency. The local orientations of the contours should match and no new contour
lines should be created.

Such an objective has been applied fruitfully in previous work.15, 17 Contour consistency implies that edges
are scaled without overshoots or jagged edge artifacts (Objectives 2 and 3). It also implies that constants are
preserved, which is just enough to satisfy Objective 1 for constant order smoothness.

3. CONTOUR STENCIL INTERPOLATION

This section describes the contour stencil interpolation method. For a sufficiently regular image u, denote by
TV(C) its total variation along a smooth curve C,

TV(C) :=

∫ T

0

∣

∣

∂
∂t

u
(

γ(t)
)∣

∣ dt (3)

where γ(t), 0 ≤ t ≤ T , parameterizes the curve C. The heart of our approach is the following theorem.

Theorem 3.1. Consider the approximation

u(x) ≈ û(x) = (1 − λ)u(a) + λu(b)

a

b

x

C1

C2

with 0 ≤ λ ≤ 1 and let C = C1 ∪ C2 be a smooth curve passing through a, x, and b. If u is differentiable along
C, then the approximation error is bounded by

|û(x) − u(x)| ≤ max
{

|1 − λ| , |λ|
}

TV(C) .

Proof. We have

|u(a) − u(x)| =

∣

∣

∣

∣

∫

C1

∂
∂t

u
(

γ(t)
)

dt

∣

∣

∣

∣

≤ TV(C1) ,

and similarly |u(b) − u(x)| ≤ TV(C2). Combining these bounds yields the result.

An obvious corollary is that if TV(C) = 0, then u is constant along C and the error is zero; interpolation along
contours is exact. This fact is the motivation for edge-directed methods. However, the exact image contours are
unknown and can only be estimated. The value of the theorem is that it quantifies the suitability of an estimated
contour by its total variation. If TV(C) is small, interpolation error is small.

The proposed approach to interpolation comes directly from Theorem 3.1: minimize TV(C). If TV(C) is the
smallest among a set of candidate curves, then the interpolation error has the smallest bound when interpolating
along C. To apply these ideas, we must translate curves and differentials to the pixels; this is where the “contour
stencils” will come in.
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3.1 Contour Stencils

Let v be the given image where vi,j denotes the value of the (i, j)th pixel. Define the (i, j)th cell as the square
whose corners correspond to vi,j , vi+1,j , vi,j+1, vi+1,j+1. For each cell, we want to find a curve Ci,j passing
through the cell such that TV(Ci,j) is small.

On the given image, a curve may be represented as a sequence of pixels α0, . . . , αN . The total variation may
then be discretized as

N
∑

n=1

|v(αn) − v(αn−1)| ≈ TV(C) . (4)

For sufficiently smooth u, nearby parallel curves have approximately the same TV. Observing this property,
the TV estimate (4) may be improved by averaging over several parallel curves.

1

1

4

1

1

+i

+j

S =

TVi,j(S) = 1
|S|

(

|vi,j − vi−1,j+1|+ |vi,j − vi+1,j−1|
+4 |vi,j+1 − vi+1,j |

+ |vi+1,j+1 − vi,j+2|+ |vi+1,j+1 − vi+2,j |
)

|S| = (1 + 1 + 4 + 1 + 1)
√

2

Figure 1. An example contour stencil S and its total variation computed at cell (i, j).

A contour stencil S is a set of edges between pixels. We choose the edges such that they approximate several
parallel curves localized over a small patch of the image (see Figure 1). Define the total variation of S at cell
(i, j) as

TVi,j(S) := 1
|S|

∑

edges

wα,β |vα − vβ | , (5)

where the wα,β denote the edge weights and |S| sums the edge lengths, |S| :=
∑

wα,β |xα − xβ |.
Now we can find an estimate of the contours by comparing the total variations of different candidate stencils.

The proposed stencil set Σ is shown in Figure 2. The best-fitting stencil is the one with the minimum TV,

S∗
i,j = arg min

S∈Σ
TVi,j(S). (6)

This stencil serves as a model of the underlying image contours. Since S∗
i,j is the stencil with the lowest estimated

total variation, the estimated error bound is minimized when interpolating along its modeled contours:

|û(x) − u(x)| ≤ TV(Ci,j) ≈ TVi,j(S∗
i,j) = min

S∈Σ
TVi,j(S).

Nevertheless, the interpolation error may yet be large since this is an estimated error bound.
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Figure 2. The 12 contour stencils used in the proposed method. Together they distinguish 8 directions.

Remark 1. If the given image is noisy, spatially filtering TVi,j(S) can improve the accuracy of the contour
detection. For example, let TVρ

i,j(S) =
(

Gρ ∗ TV(S)
)

i,j
, where Gρ is a Gaussian with standard deviation ρ.

Even for clean images, light filtering can improve the results.
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Remark 2. The weights on the stencil edges have only a small effect on the detection. Results are similar if, for
example, all edges have the same weight. The intention is to improve spatial accuracy by giving more significance
to edges in the center of the stencils. The choice of weights affects the results most where there is a near tie in
(6) for the minimum TV(S), that is, the weights can help where the detection gets confused.

Remark 3. Generalizing beyond scalar-valued images, the absolute value in (5) may be replaced by a vector norm
or a metric. On color images, for example, a choice is ‖�u− �w‖ = |ured−wred|+ |ugreen−wgreen|+ |ublue−wblue|
or a vector norm in some other color space.

3.2 Interpolation

We now apply the contour stencil detection (§3.1) to interpolation. The following formulas give a simple way to
perform factor 2 interpolation for the stencil set shown in Figure 2, which we call contour stencil interpolation.
In the diagrams, filled circles are pixels in the given image v; open circles are interpolated pixels, which are
computed as the average of all incoming arrows.

For S∗
i,j = , , and the isotropic

fallback, do standard bilinear interpolation:

vi,j vi+1,j

vi,j+1 vi+1,j+1

N

S

W EX

N = 1

2
(vi,j + vi+1,j)

S = 1

2
(vi,j+1 + vi+1,j+1)

W = 1

2
(vi,j + vi,j+1)

E = 1

2
(vi+1,j + vi+1,j+1)

X = 1

4
(vi,j + vi+1,j + vi,j+1 + vi+1,j+1)

For S∗
i,j = , similarly for

vi,j vi+1,j

vi,j+1 vi+1,j+1

N

S

W EX

N = 1

2
(vi,j + vi+1,j)

S = 1

2
(vi,j+1 + vi+1,j+1)

W = 1

2
(vi,j + vi,j+1)

E = 1

2
(vi+1,j + vi+1,j+1)

X = 1

2
(vi,j+1 + vi+1,j)

For S∗
i,j = , similarly for , ,

vi,j vi+1,j

vi,j+1 vi+1,j+1

N

S

W EX

N = 1

2
(vi,j + vi+1,j)

S = 1

2
(vi,j+1 + vi+1,j+1)

X = W = E = 1

2
(vi,j+1 + vi+1,j)

For S∗
i,j = , similarly for , ,

vi,j vi+1,j

vi,j+1 vi+1,j+1

N

S

W EX

N = W = 1

2
(vi,j + vi+1,j)

S = E = 1

2
(vi,j+1 + vi+1,j+1)

X = 1

4
(vi,j + vi+1,j + vi,j+1 + vi+1,j+1)

In the typical case that an edge midpoint is shared between adjacent cells, its interpolated value is the average
of the two assigned values.

For example, if S∗
i,j = and S∗

i+1,j = , then

vi,j vi+1,j

vi,j+1 vi+1,j+1

vi+2,j

vi+2,j+1

N

S

W X

N ′

S′

E′X ′

M

E = 1

2
(vi,j+1 + vi+1,j)

W
′ = 1

2
(vi+1,j + vi+2,j)

M = 1

2
(E + W

′)
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Again, these interpolation formulas are just a simple implementation of the guiding principle that values
should be interpolated along the contours. The same principle may be applied to derive interpolation formulas
for other stencils and interpolation factors other than 2.

To summarize, contour stencil interpolation is done by performing the following steps for each cell of the
input image: compute the TV estimates (5), determine the best-fitting stencil S∗

i,j , compute the interpolated
pixels, and average shared midpoint values. The next section discusses the implementation in more detail.

Input Contour Stencil Interpolation

Figure 3. The proposed factor 2 interpolation strategy has been applied twice for a factor 4 increase in resolution. Notice
the effective interpolation of fine features like the hair, eyes, and teeth. Such quality on one-pixel wide features is possible
thanks to the contour stencil detection strategy.

The proposed method resembles the one dimensional Essentially Non-Oscillatory (ENO) interpolation tech-
nique.21 In ENO, a piecewise polynomial interpolant is constructed in such a way as to avoid oscillations near
singularities. For each interval, a set of possible interpolation stencils are considered, and the stencil with the
smallest divided difference is selected for interpolation. The total variation estimates TV(S) in the proposed
method have the same role: testing how well the stencils fit the data. In both methods, interpolation then
proceeds using the best stencil as a model for the underlying function.

Remark 4. A factor 2 scaling method may be extended to other scale factors by “pyramid magnification.”18

Apply the factor 2 method k times for a factor 2k resolution increase. For a nondyadic factor R, apply the
method k = log2⌈R⌉ times and then reduce to the desired resolution with bilinear scaling.

3.3 Fast Implementation

This section discusses fast implementation of contour stencil interpolation. In the following, we make a couple
sacrifices in quality to improve speed: we forgo stencil denoising by setting ρ = 0 and implement all computations
in integer arithmetic. (Similar implementation is still possible without these sacrifices.) On a modern computer∗,
the implementation presented here performs the interpolation at about 70ns per output pixel.

∗Computations were timed on a 2.40GHz Intel R© CoreTM 2 Duo T7700 with 2GB RAM.
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The bottleneck computations are the differences |vα − vβ | appearing in the TV computations (5). Define the
differences

DH
m,n = |vm,n − vm+1,n| m = i − 1, i, i + 1

DV
m,n = |vm,n − vm,n+1| n = j − 1, j, j + 1

DA
m,n = |vm,n − vm+1,n+1|

DB
m,n = |vm,n+1 − vm+1,n|

.

The differences are computed over a window m = i−1, i, i+1, n = j−1, j, j +1. (For a color image, substitute
|·| with a vector norm as in Remark 3.) These differences can be combined to compute the TV estimates,

TVi,j(S) := 1
|S|

∑

edges

wα,β |vα − vβ | .

To eliminate the division by |S|, we can use a set of integer edge weights such that |S| is approximately the same
for every stencil—then the division is unnecessary. One possible choice is

22

43

22

22

43

22

|S| = 174.0

16

16

59

16

16

|S| = 173.9

17

17

22

34

22

17

17

|S| = 174.2

39

34

34

39

|S| = 174.2

(and similarly for the

other 8 stencils).

Algorithm. Contour stencil interpolation by factor 2

Loop j,

0 → i

Compute the differences in the window

Loop i,

Use the differences to compute TVi,j(S) for
each stencil

Find the minimum-TV stencil S∗
i,j

Interpolate cell (i, j) according to S∗
i,j (§3.2)

Average the edge midpoints with previously
assigned values

Compute the new differences on the right
edge of the window

i + 1 → i

j + 1 → j

+i

+j

Average midpoints with
previously assigned values

vi,j

Interpolating cell (i, j)

vi+1,j

Computing new differences

4. EXAMPLES

Contour stencil interpolation is demonstrated in Figures 3 and 4. The interpolation can partially recover oriented
textures like hair. In Figure 5, contour stencil interpolation is applied on a color image, by replacing the absolute
value with the ℓ1 norm in the YCbCr color space.
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-S

Figure 4. First row: input. Second row: contour stencil interpolation by factor 2. Wolf photograph by Gary Kramer, U.S.

Fish and Wildlife Service.

Input Contour Stencil Interpolation

Figure 5. Color contour stencil interpolation, by replacing absolute value with a vector norm (see Remark 3). Photograph

by Steve Hillebrand, U.S. Fish and Wildlife Service.
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Figure 6 shows an experiment in which a high-resolution image is reduced by factor 2 and then approximately
recovered by bicubic interpolation with PSNR 29.7 and contour stencil interpolation with PSNR 29.3. The result
with contour stencil interpolation appears sharper and edges are less jagged than with bicubic interpolation, yet
the PSNR values suggest that the bicubic result is better. This example illustrates that larger PSNR value (or
SNR value) does not necessarily imply better visual quality.22

Original Input

Bicubic Interpolation (PSNR 29.7) Contour Stencil Interpolation (PSNR 29.3)

Figure 6. Interpolation experiment on a color image. The original image (top left) is reduced by factor 2 to create the
input image (top right). The input image is interpolated to recover an image with the same resolution as the original.
(Same experiment with bilinear interpolation: PSNR 29.2.) Photograph by John D. Willson, Amphibian Research and

Monitoring Initiative.

Figure 7 compares the proposed method (with ρ = 0.5) alongside several existing edge-adaptive methods:
the TV-based method of Malgouyres12 (where h is the lowpass analysis filter of the CDF 9/7 wavelet), an
implementation of IFS image scaling,23 and the edge-directed method AQua-2 of Muresan.16 Again, since the
results are quite similar, PSNR comparison would be misleading. The methods should be evaluated by how well
they achieve the design objectives (§2.2).

SPIE-IS&T/ Vol. 7257  725718-9



Input TV IFS AQua-2 Proposed

Figure 7. The proposed method is compared against existing image scaling methods. The test image was constructed to
include the following atomic image elements: antialiased and non-antialiased steps and lines, smooth regions, and lines
endings and intersections.

5. ENHANCEMENT WITH CONTOUR STENCILS

In the previous section, contour stencils were used for edge-adaptive interpolation. This section shows that
contour stencils are also useful in other image processing tasks by developing a contour stencils based method
for image enhancement, that is, simultaneous sharpening and denoising.

A simple method for sharpening a one-dimensional signal is to push the signal up where uxx < 0 and down
where uxx > 0, that is,

ut = − sign(uxx) |ux| .
Another point of view is that this PDE is the transport equation ut = −cux pushing the signal left and right
with coefficient c(t, x) = sign(uxx) sign(ux). Discretizing according to the characteristics,

un+1(x) = un
(

x − h sign(un
xx) sign(un

x)
)

,

where h should be on the order of the grid spacing. Extending to two dimensions, we obtain a simple method
for image sharpening,

un+1(x) = un
(

x − h sign(un
ηη) ∇un

|∇un|

)

, (7)

where uηη = ∇u
|∇u| · ∇2u · ∇u

|∇u| denotes the second derivative of u in the direction of ∇u.

The proposed enhancement method combines (7) with ROF image denoising. For a given a noisy image f
and parameter λ > 0, the u that solves

0 = ∇ ·
( ∇u

|∇u|

)

+ λ(f − u)
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is the ROF denoised image. The first term encourages u to have low total variation while the second term
encourages u to stay close to f . For simultaneous denoising and sharpening, the proposed method is to replace
f as

0 = ∇ ·
( ∇u

|∇u|

)

+ λ
[

u
(

x − h sign(uηη) ∇u
|∇u|

)

− u(x)
]

. (8)

This modification does, of course, compromise many of ROF’s properties. Uniqueness is lost, for example, since
any constant function u satisfies (8). Instead, we seek an approximate solution nearby f . The idea is that if (8)
is solved by an iterative method, then the second term incorporates the sharpening iteration from (7) while the
first term provides smoothing as it does in the original ROF model.

Usually, we think of sharpening and smoothing as opposing processes, but in (8) they have a fortuitous
cooperation. The first term provides smoothing in the sense that it reduces the total variation, meaning it
smooths out impulses and oscillations but does not change edges. The sharpening iteration sharpens the edges,
but does not increase the size of the jumps, meaning it does not increase the total variation. So the smoothing
and the sharpening do not undo one another’s work.

Equation (8) can be discretized with the help of contour stencils. For the purpose of enhancement, we use
another set of stencils that are node-oriented (while the set in Figure 2 is cell-oriented).

Σ =

{ }

Let S∗
i,j denote the best-fitting stencil at (i, j). Depending on S∗

i,j , define u−
i,j and u+

i,j by

u±
i,j =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ui±1,j if S∗
i,j =

ui,j±1 if S∗
i,j =

(ui±1,j + ui,j±1)/2 if S∗
i,j =

(ui∓1,j + ui,j±1)/2 if S∗
i,j =

u−

i,j

ui,j

u+

i,j

The values u−
i,j , ui,j , u+

i,j give a cross-section of the edge at (i, j), which enable the approximations

1

|∇u| ≈ wi,j =
2h

|u − u−| + |u − u+|

u
(

x − h sign(uηη) ∇u
|∇u|

)

≈ ũi,j =

{

u+
i,j if ui,j is close to u+

i,j,

u−
i,j if ui,j is close to u−

i,j.

For determining between the two cases, let ξ = sign(|u− u−| − |u− u+|), then ũ is found as ũi,j = u
sign(ξi,j)
i,j .

Unfortunately, the edges obtained using this approximation for u
(

x − h sign(uηη) ∇u
|∇u|

)

tend to be unnaturally

sharp and jagged. Smoother edges are obtained using a soft sign, for example, let

ξ = 2
π

arctan
(

κ(|u − u−| − |u − u+|)
)

where parameter κ determines edge steepness, and let

ũ = (1 − |ξ|)u + |ξ|usign(ξ).

Let Ni,j =
{

(i+1, j), (i−1, j), (i, j +1), (i, j−1)
}

denote the neighborhood of pixel (i, j). Then, in imitation
of the digital TV filter,14 (8) may be discretized as

0 =
∑

q∈Ni,j

wn
q (un

q − un+1
i,j ) + λ(ũn

i,j − un+1
i,j ),
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yielding the iteration

u0 = f, un+1
i,j =

λũn
i,j +

∑

q∈Ni,j
wn

q un
q

λ +
∑

q∈Ni,j
wn

q

. (9)

Like the digital TV filter, (9) converges quickly, and often produces satisfactory results with about 5 iterations.

Figure 8 tests the method’s robustness with increasing levels of noise (additive white Gaussian noise with
standard deviations 10, 20, and 40). In Figure 9, the method is extended to color images by replacing absolute
value with a norm. The method is compared against the method of Horiuchi et al.24

Figure 8. Top row: input with increasing levels of noise. Bottom row: enhanced (5 iterations, κ = 3, λ = 20).

Input Horiuchi et al. Proposed

Figure 9. Comparison with Horiuchi et al.24

6. CONCLUSIONS

We have introduced contour stencils (§3.1), a simple method for detecting the local orientation of image con-
tours. Using this tool, we developed an edge-adaptive interpolation method that is computationally efficient and
competitive with the state-of-the-art. We also applied contour stencils in estimating the differential quantities in
an image enhancement method (§5), demonstrating the potential of contour stencils in other low-level imaging
tasks.
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In this development, the choice of stencil set and the interpolation formulas were ad hoc, and other choices
are left to be explored. For example, larger line stencils could be designed to distinguish between more than 8
directions for better directional selectivity. Stencils do not have to be lines, they could also model other features
like corners and junctions. These possibilities will be considered in future research.

REFERENCES

[1] Freeman, W. T., Jones, T. R., and Pasztor, E. C., “Example-based super-resolution,” IEEE Computer
Graphics and Applications 22(2), 56–65 (2002).

[2] Ebrahimi, M. and Vrscay, E., “Solving the inverse problem of image zooming using ‘self-examples’,” in
[ICIAR07 ], 117–130 (2007).

[3] Li, D., Simske, S. J., and Mersereau, R. M., “Single image super-resolution based on support vector regres-
sion,” in [IJCNN ], 2898–2901 (2007).

[4] Jiji, C. V. and Chaudhuri, S., “Single-frame image super-resolution through contourlet learning,” EURASIP
J. Appl. Signal Process. 2006(1), 235–235 (2008).

[5] Fisher, Y., “Fractal image compression. SIGGRAPH’92 course notes,” (1992).

[6] Chen, Y., Luo, Y., and Hu, D., “Image superresolution using fractal coding,” Optical Engineering 47(1),
017007 (2008).

[7] Luong, H. Q., Ledda, A., and Philips, W., “Non-local interpolation,” in [ICIP ], 693–696 (2006).

[8] Protter, M., Elad, M., Takeda, H., and Milanfar, P., “Generalizing the non-local-means to super-resolution
reconstruction,” IEEE Transactions on Image Processing (2008).
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