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Abstract. Harten’s framework is a nonlinear generalization of the wavelet framework. Pre-
viously, the choice of discretization (scaling function) in Harten multiresolution schemes has been
limited to point-value, cell-average, and hat-based discretization. This paper shows how to construct
multiresolution schemes consistent with Harten’s framework for a variety of discretizations. The
construction here begins with the discrete operators and deduces the corresponding continuous oper-
ators, reversing the order of the usual approach. This construction yields as a special case essentially
nonoscillatory (ENO) multiresolution schemes for any order of spline discretization and also has the
flexibility to define multiresolution schemes with nonspline discretizations. An error-control strategy
is also developed.
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1. Introduction. Harten’s multiresolution framework [5] generalizes wavelet
transforms. Harten’s framework requires that the decimation (coarsening) operator
be linear, but the prediction (refining) operator may be nonlinear.

One effective choice for this prediction operator is essentially nonoscillatory (ENO)
interpolation, an edge-adaptive interpolation technique originating in the numerical
methods of hyperbolic conservation laws [12]. ENO multiresolution schemes based on
ENO interpolation achieve efficient, edge-adaptive decompositions and are especially
successful on piecewise-smooth functions, as shown by the numerical experiments in
[2].

1.1. Earlier work. Much work on nonlinear multiresolution in the wavelet lit-
erature has been inspired by Sweldens’s wavelet lifting scheme [19]. In [8], Claypoole
et al. used a nonlinear prediction stage to create an edge-adaptive transform. Heij-
mans and Goutsias [15] developed the general morphological wavelets framework for
constructing nonlinear wavelets.

Many have worked to develop Harten multiresolution, including:
• Harten [13, 14] developed the foundation of Harten’s framework and ENO

multiresolution schemes.
• Cohen, Dyn, and Matëı [10] studied the convergence of ENO prediction

schemes and other properties of recursive prediction using the machinery of
subdivision refinement schemes.

• Sonar, Iske, Cecil, Qian, and Osher [7, 16, 18] proposed the extensions of
ENO beyond one dimension using radial basis functions. Cohen and Matëi
[9] extended ENO to two dimensions with rotating step functions.
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• Aràndiga, Donat, and Harten [6] constructed an ENO transform satisfying
Harten’s framework using hat-based discretization.

1.2. This paper’s contribution. Harten’s framework is in principle more gen-
eral than the wavelet framework, yet most development so far has focused on the
point-value and cell-average discretizations (analogous to the lazy and Haar wavelets).
Aràndiga, Donat, and Harten [6] developed a third, the hat-based discretization. In
wavelet nomenclature, only three possible scaling functions have been thoroughly
considered.

The goal of this paper is to extend these constructions to all discretizations where
the decimation filter is finite impulse response (FIR). This class of discretizations
includes those induced by FIR wavelets as well as the three previously developed
discretizations. Previously, Harten constructions start in the continuous domain by
defining a discretization operator Dk and a reconstruction operator Rk. Approaching
the construction from the discrete domain, however, many operators can be defined
without Dk and Rk. We construct the decimation and prediction operators first and
then deduce Dk and a choice of Rk.

1.3. Outline. Section 2 reviews the construction of Harten’s framework. Sec-
tion 3 describes ENO interpolation (section 3.1), point-value discretization ENO
schemes (section 3.2), and cell-average and hat-based discretization ENO schemes
(section 3.3). Sections 4 and 5 develop for any FIR decimation filter h,

• a valid prediction operator (section 4.3),
• detail operators for a nonredundant scheme (section 4.1),
• Dk and Rk (section 4.4),
• an error-control strategy (section 5).

Section 6 develops two examples of this construction: Schemes with any spline dis-
cretization (section 6.1) and an example of nonspline discretization (section 6.2). Sec-
tion 7 is the conclusion.

1.4. Notation. Define a discrete signal as any real or complex-valued sequence
v = (vn)n∈Z. An FIR filter is a discrete signal that is nonzero for finitely many n.
Define its bilateral Z-transform v(z),

(1.1) v(z)
def
= Z{v}(z) =

∑

n∈Z

vnz
−n.

Define dyadic downsampling and upsampling on v as

(↓v)n = v2n, (↑v)n =

{

vn/2 if n even,
0 if n odd.

The Z-transform of ↑↓v is

(1.2) 1
2

(

v(z) + v(−z)
)

.

Denote by ·̂ the Fourier transform,

f̂(ω)
def
=

∫ +∞

−∞

f(x) e−iωx dx.
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Fig. 2.1. Left: f(x) = e−25x2√
x − 1

4

√
1 − x. Center: Dkf with point-value discretization,

(Dkf)n = f(n/6). Right: RkDkf , where Rk is cubic spline interpolation.

2. Harten’s framework. Harten’s framework [5] builds from two operators:
Discretization Dk and reconstruction Rk. These operators map between functions
and discrete signals at resolution k. The index k denotes the resolution level, where
increasing k implies finer resolution.

Let F be space of functions, and let V k be a vector space of discrete signals.
Discretization Dk : F → V k is a linear operator mapping f ∈ F to a discrete signal
vk = Dkf . Reconstruction Rk : V k → F is a (generally) nonlinear operator mapping
discrete signals to functions. This nonlinearity is where Harten’s framework is more
general than the wavelet framework. Figure 2.1 shows an example of discretization
and reconstruction, where Dk is point-value discretization and Rk is cubic spline
interpolation.

Harten’s framework requires that the discretization and reconstruction operators
satisfy a consistency relationship

(2.1) DkRk = IV k ,

where IV K denotes identity on V k. The reconstruction Rkv
k must be consistent with

the discrete information in vk.
To construct a multiresolution scheme, define a decimation operator Dk−1

k =
Dk−1Rk and a prediction operator P k

k−1 = DkRk−1 as follows:

Finer resolution

❄

Dk−1
k

Coarser resolution

F
V

k

V
k−1

✏
✏

✏✏✮

Rk

�
�

���

Dk−1

❄

Dk−1
k F

V
k

V
k−1

✏
✏

✏✏✶
Dk

�
�

��✐Rk−1

❄

P k
k−1

Finer resolution

❄

Pk
k−1

Coarser resolution

Decimation reduces the discrete signal vk to vk−1; vk−1 = Dk−1
k vk. The prediction

operator predicts vk from vk−1; P k
k−1v

k−1 is an approximation of vk. Define the
prediction error as

ek = vk − P k
k−1v

k−1.

The operators Dk−1
k and P k

k−1 can be used to construct a multiresolution pyramid

(see Figure 2.2). If vk is the input, then one stage of decomposition outputs the

vk

✲

✲
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Fig. 2.2. Pyramid decomposition under Harten’s framework.
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decimated signal vk−1 and the prediction error ek. Because ek is at the same sample
rate as vk, the decomposition is 50% oversampled, that is, (vk−1, ek) redundantly
represents vk. This single decomposition stage is iterated on the decimated signal for
a multiresolution representation (vk−L, ek−L+1, . . . , ek).

The discretization sequence (Dk) is nested if

(2.2) Dkf = 0 ⇒ Dk−1f = 0 for all f ∈ F , k ∈ Z.

If (Dk) is nested, then Dk
k−1 has no dependence on Rk despite its definition, and it

must be a linear operator [5]. This property, along with the consistency requirement
(2.1), implies that DmRkDk = Dm for m ≤ k and a discrete analogy of the consistency
relationship

(2.3) Dk−1
k P k

k−1 = Dk−1RkDkRk−1 = Dk−1Rk−1 = IV k−1 .

Consequently, ek is in the nullspace of Dk−1
k :

(2.4)
Dk−1

k ek = Dk−1
k

(

IV k − P k
k−1D

k−1
k

)

vk

=
(

Dk−1
k −Dk−1

k (P k
k−1D

k−1
k )

)

vk = 0.

By (2.4), it is possible to design a nonredundant (critically sampled) multiresolution
decomposition. Let Gk be a detail encoder such that dk = Gke

k is at half the sample
rate of ek, and let G̃k be the corresponding decoder such that G̃kGke

k = ek for
any ek in the nullspace of Dk−1

k . Then (vk−1, dk) is a nonredundant representation
of vk. This single stage is iterated on the decimated signal for a multiresolution
representation (vk−L, dk−L+1, . . . , dk).

In summary, a multiresolution scheme within Harten’s framework is characterized
by six operators: The fundamental discretization and reconstruction operators Dk

and Rk, the decimation operator Dk−1
k , the prediction operator P k

k−1, and the detail

operators Gk and G̃k. The next section shows how ENO multiresolution schemes fit
into the Harten framework.

3. ENO multiresolution schemes. ENO multiresolution schemes are Harten
multiresolution schemes where the reconstruction operator is ENO interpolation.
ENO interpolation is an effective edge-adaptive strategy for piecewise polynomial
interpolation (essentially) without oscillatory artifacts (see Figure 3.1).

3.1. ENO interpolation. Let vn = f(xn) be samples from an underlying func-
tion f . ENO interpolation approximates f from the point-values v by a piecewise
polynomial model.

Cubic Interpolation ENO Interpolation

Fig. 3.1. An interpolation of piecewise-smooth data. Cubic interpolation produces oscillations
around the discontinuity, but ENO interpolation does not.
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On each subinterval [xn−1, xn], a polynomial interpolant qn(x) is constructed
based on a stencil Sn such that qn(x) = f(x) for all x ∈ Sn. For example, cu-
bic interpolation finds the cubic polynomial qn satisfying the point-values at Sn =
{xn−2, xn−1, xn, xn+1} to interpolate [xn−1, xn]. In ENO interpolation, the Sn are
selected to adapt to the vk.

The accuracy of such an interpolant depends heavily on the stencil. Let S be a
stencil, and denote by S⌢ its convex hull. If S has M + 1 points and f ∈ CM+1(S⌢),
the interpolation error is

(3.1) f(x) − q(x) =
f (M+1)

(

ξ(x)
)

(M + 1)!

∏

xj∈S

(x− xj) for some ξ(x) ∈ S⌢.

If f is locally smooth, the interpolation error is small. However, if f has a jump or
derivative singularity in S⌢, the error can be much greater [5].

ENO interpolation attempts to choose stencils that do not cross jumps or deriva-
tive discontinuities. To construct an interpolant qn(x) of degree M , consider the
stencils Sn = {xkn−1, . . . , xkn+M−1}, n −M + 1 ≤ kn ≤ n. Each stencil has M + 1
points and includes xn−1 and xn. The interpolation error associated with a particular
stencil is estimated with the Mth-order divided difference of the stencil samples f [S]:

(3.2) |f [S]| =

⎧

⎨

⎩

0, f is locally polynomial,
O([f (p)])/hM−p, the stencil crosses a discontinuity in f (p),
O(
∥

∥f (M)
∥

∥), otherwise,

where [f (p)] is the size of the jump and
∥

∥f (M)
∥

∥ is the max-norm of f (M) over S⌢. For
example, if M = 2, (3.2) has the form

|f [Si]| =
1

2h2
|f(xk−1) − 2f(xk) + f(xk+1)| , k = i− 1 or i.

This estimate distinguishes between intervals where f is locally linear and intervals
containing jumps or first derivative discontinuities. In general, the Mth-order error
estimate can detect discontinuities in up to the M − 1 derivative.

In [12], Harten et al. consider two methods for choosing the stencil shifts kn:
Hierarchical stencil selection

For each n
kn := n
for j = 0, . . . ,M − 2

if |f [xkn−2, . . . , xkn+j ]| < |f [xkn−1, . . . , xkn+j+1]|, then kn := kn − 1
end.

Nonhierarchical stencil selection

For each n, choose kn such that
|f [xkn−1, . . . , xkn+M−1]| = min

n−M+1≤k≤n
|f [xk−1, . . . , xk+M−1]| .

The hierarchical method has the disadvantage that it can produce singularity-
crossing stencils for discontinuities in f ′′ or higher derivatives regardless of M . The
nonhierarchical method avoids this problem, but it is biased by f (M) [5, 12]. The hi-
erarchical method is usually preferred; however, for the multiresolution constructions
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v
k

0 14
−1

0

1

n

v
k−1

0 7
−1

0

1

n

P
k

k−1v
k−1

0 14
−1

0

1

n

v
k

v
k−1

P
k

k−1v
k−1

e
k

d
k
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−0.0253 −0.0253 −0.0253 0
−0.5039 −0.5177 0.0138 0.0138
−0.8430 −0.8430 −0.8430 0
−0.9487 −0.9510 0.0024 0.0024
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0.6345 0.6345 0.6345 0
0.5302 0.5366 −0.0065 −0.0065
0.4000 0.4000 0.4000 0

Fig. 3.2. An example of point-value ENO decomposition using cubic ENO interpolation. The
largest error ek7 = 0.7146 occurs in the interval containing the discontinuity.

developed in this paper, the nonhierarchical method is often the better choice. This
will be discussed further in section 6.1.

Define IENO
k : V k → F as ENO interpolation. For uniformly spaced xn, define

(PENOv)n = (IENO
k v)(xn/2).

PENO has the property ↓ PENO = I. We call an operator with this property an
interpolatory operator.

3.2. Point-value discretization. ENO interpolation is the reconstruction op-
erator in point-value ENO multiresolution. Define Dk as sampling point values:

vkn = (Dkf)n = f(xk
n), xk

n = 2−kn.

The interpolant Rkv
k = IENO

k vk is equal to f at the point-values f(xk
n), so the

consistency relationship DkRk = IV k is trivially satisfied. The decimation operator
is downsampling, vk−1 = Dk

k−1v
k = ↓vk. The prediction operator P k

k−1 = DkRk−1 is
ENO interpolatory prediction,

(P k
k−1v

k−1)n = (IENO
k vk−1)(xk

n) = (PENOvk−1)n.

The prediction error ek = vk − P k
k−1v

k−1 is nonzero only for odd n. For a nonredun-

dant representation, the detail is encoded by keeping samples at odd n; dkn = ek2n+1

(see Figure 3.2).

3.3. Cell-average and hat-based discretizations. In most multiresolution
schemes, smoothing is applied before downsampling to avoid aliasing in the coarser
subbands. The cell-average and hat-based discretizations use local averages to achieve
this smoothing. Suppose f ∈ L1

loc is discretized by computing weighted averages

(Dkf)n =

∫

2kφ(n− 2kx) f(x) dx,
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where φ is a compactly supported weighting function. Equivalently, (Dkf)n = (φk ∗
f)(xk

n), with φk(x) = 2kφ(2kx). For cell-average discretization, φ is the Haar scaling
function

φ(x) =

{

1, 0 ≤ x < 1,
0, otherwise.

✛ ✲

❄

❄

1

1

The discretization (Dkf)n is the average over the cell ckn = ( 2−k(n− 1), 2−kn ),

(Dkf)n = 2k
∫

ckn

f(x) dx,

hence the name “cell-average.” The dilation equation of the Haar scaling function
φ(x) = φ(2x)+φ(2x−1) implies that vk−1

n = 1
2v

k
2n+ 1

2v
k
2n−1. Therefore, the decimation

operator is (Dk−1
k vk)n = 1

2v
k
2n + 1

2v
k
2n−1.

For hat-based discretization, φ is the hat function

φ(x) =

⎧

⎨

⎩

1 + x, −1 ≤ x ≤ 0,
1 − x, 0 ≤ x ≤ 1,
0, otherwise.

✛ ✲

❄

❄

−1 1

1

�
�

�
��

❅
❅

❅
❅❅

As with cell-average discretization, the dilation equation of φ determines Dk−1
k :

φ(x) = 1
2φ(2x− 1) + φ(2x) + 1

2φ(2x + 1),

(Dk−1
k vk)n = 1

4v
k
2n−1 + 1

2v
k
2n + 1

4v
k
2n+1.

Consider the reconstruction operators for these discretization operators. To sat-
isfy the consistency requirement DkRk = IV k , one approach is to modify the point-
value ENO interpolation described in section 3.1 such that the reconstruction function
attains averages rather than point-values [1].

Harten’s approach to constructing Rk is reconstruction via primitive function

[6, 14]. The idea is to reduce reconstruction to interpolation (that is, to point-value
reconstruction). For cell-average discretization, the relationship between f and its

primitive f̊ is

f̊(x) =

∫ x

0

f(y) dy, f(x) =
d

dx
f̊(x).

Set v̊k−1 = 0, then the relationship between vk and v̊k is

(3.3) v̊kn = 2−k
n
∑

m=0

vkm, vkn = 2k (̊vkn − v̊kn−1), n = 0, . . . Jk − 1.

Let Ik be any interpolatory operator, for example, ENO interpolation. Define the
reconstruction operator as

(3.4) (Rkv
k)(x) =

d

dx
Ikv̊k(x).
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This Rk satisfies the consistency relationship (2.1): For any vk ∈ V k,

(DkRkv
k)n = 2k

∫ xk
n

xk
n−1

d

dx
(Ikv̊k) dx = 2k (̊vkn − v̊kn−1) = vkn.

The derivative in (3.4) should be interpreted in the weak sense. When Ik is ENO
interpolation, Ikv̊k is piecewise differentiable, so Rkv

k is piecewise continuous.
Using (3.3) to obtain v̊k from vk, the prediction operator P k

k−1 = DkRk−1 is

(3.5) (P k
k−1v

k−1)n = 2k
[

(Ik−1v̊
k−1)(xk

n) − (Ik−1v̊
k−1)(xk

n−1)
]

.

The approach is similar for hat-based discretization. As developed in [6], the
relationship between f and its primitive is

f̊(x) =

∫ x

0

∫ y

0

f(z) dz dy, f(x) =
d2

dx2
f̊(x).

Setting v̊kn = 0 for n < 0, there is a bijection between vk and v̊k:

v̊kn = 4−k
n
∑

m=0

m
∑

j=0

vkj , vkn = 4k (̊vkn+1 − 2̊vkn + v̊kn−1), n = 0, . . . Jk − 1.

Define the reconstruction operator analogously to (3.4),

(3.6) (Rkv
k)(x) =

d2

dx2
Ikv̊k(x).

The second derivative should be interpreted in the weak sense. While the first deriva-
tive in (3.4) can produce jump discontinuities, (3.6) can produce Dirac measures.

It is true that (3.6) satisfies DkRk = IV k , but verifying this is more cumbersome
than in the cell-average case; see [6]. The prediction operator P k

k−1 = DkRk−1 is

(P k
k−1v

k−1)n = 4k
[

(Ik−1v̊
k−1)(xk

n+1)(3.7)

−2(Ik−1v̊
k−1)(xk

n) + (Ik−1v̊
k−1)(xk

n−1)
]

.

Detail encoder and decoder operators can be found using the property that
Dk−1

k ek = 0. For cell-average discretization, this is ek2n = −ek2n−1; thus a choice
of detail encoder and decoder operators is

dkn = (Gke
k)n = ek2n−1,

{

ek2n−1 = (G̃kd
k)2n−1 = dkn,

ek2n = (G̃kd
k)2n = −dkn.

For hat-based discretization, ek2n = − 1
2 (ek2n−1 + ek2n+1). As proposed in [6], the detail

operators can be

dkn = (Gke
k)n = ek2n−1,

{

ek2n−1 = (G̃kd
k)2n−1 = dkn,

ek2n = (G̃kd
k)2n = − 1

2 (dkn + dkn+1).

Cell-average and hat-based discretizations are two members of a family of spline-
based discretizations. Denote the order of a spline discretization by N , with cell-
average discretization as N = 1 and hat-based discretization as N = 2. Point-value
discretization fits into this classification as N = 0.

For general N , the weight function φ is the B-spline of order N−1, and f̊ is related
to f through an Nth-order integral. The next sections develop the construction
of the framework operators for a variety of discretizations, including spline-based
discretization of any order (section 6.1).
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4. Construction with general discretizations. Harten’s framework is de-
fined starting with a discretization operator Dk and a reconstruction operator Rk

in the continuous domain. These operators are then used to define the decimation
and prediction operators in the discrete domain. In this section, the reverse is done:
Construction begins with the discrete operators.

Through this section, let h be an FIR filter, and define the decimation operator
Dk−1

k vk = ↓(h ∗ vk).
4.1. Detail encoding. Considering h as a wavelet lowpass filter, let h̃, g, and g̃

be corresponding dual lowpass, highpass, and dual highpass wavelet filters, and define
Hkv = Dk−1

k v, Gkv = ↓ (g ∗ v), H̃kv = h̃ ∗↑ v, G̃k = g̃ ∗↑ v.

Suppose this wavelet transform is applied to ek. Since Hke
k = Dk−1

k ek = 0 by

(2.4), the lowpass component is zero (see Figure 4.1). Therefore, Gk and G̃k from this
wavelet transform are a choice of detail operators for nonredundant decomposition.

Since Gk and G̃k are linear, the nonredundant decomposition shown in Figure 4.2
is equivalent to a one-stage lifting scheme (see Figure 4.3).

Remark 1. More generally, any linear operators Gk from V k to V k−1 and H̃k and
G̃k from V k−1 to V k satisfying H̃kD

k−1
k + G̃kGk = IV k constitute a lifting scheme as

shown in Figure 4.3.
To construct the detail operators for a given decimation filter h, a wavelet must

be constructed with this same filter h as its lowpass filter. The perfect reconstruction
of the wavelet scheme implies the conditions

h(z) h̃(z) + g(z) g̃(z) = 2,

h(z) h̃(−z) + g(z) g̃(−z) = 0.

ek

Hk

Gk

✲

✲

0

dk

H̃k

G̃k
✲

❄
✲ ek+❥

Fig. 4.1. A wavelet transform of ek.
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✲
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✲

vk−1
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P
k

k−1

G̃k

❄

+

❄

✲ vk

❥

❥

Fig. 4.2. Nonredundant decomposition using detail encoding.
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✲

✲

D
k−1
k

✲

❄

P
k

k−1 Gk

❄−
+ ✲Gk

✲

vk−1

dk ✲ ✲

✲

❄

P
k

k−1 Gk

❄

+

H̃k

G̃k

❄

+

❄

✲ vk

❥ ❥

❥

Fig. 4.3. Nonredundant decomposition as a one-stage lifting scheme.
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If g(z) = z−1 h̃(−z) and g̃(z) = z h(−z), the second condition is satisfied. The first
condition then reduces to h(z) h̃(z) + h(−z) h̃(−z) = 2, which is true if (h ∗ h̃)0 = 1
and (h ∗ h̃)n = 0 for nonzero even n. Thus h̃ must satisfy the linear system

(4.1)
∑

j

h̃j h2n−j =

{

1 if n = 0,
0 if n 	= 0

for all n.

For example, consider h(z) = az2 + bz + c+ dz−1 + ez−2. If h̃ is assumed to have
the form h̃(z) = h̃−1 z + h̃0 + h̃1 z

−1, (4.1) becomes the matrix equation
⎡

⎣

b a 0
d c b
0 e d

⎤

⎦

⎡

⎣

h̃−1

h̃0

h̃1

⎤

⎦ =

⎡

⎣

0
1
0

⎤

⎦ .

Provided a nonzero determinant κ = bcd − ad2 − b2e 	= 0, the solution is h̃(z) =
1
κ (−adz + bd− bez−1) and

(4.2)

h(z) = az2 + bz + c + dz−1 + ez−2, g(z) =
1

κ

(

ad + bdz−1 + bez−2
)

,

h̃(z) =
1

κ

(

−adz + bd− bez−1
)

, g̃(z) = az3 − bz2 + cz − d + ez−1.

It is also possible to select filters from existing wavelet families. Given a number of
reconstruction vanishing moments N and decomposition vanishing moments Ñ where
N + Ñ is even, the spline wavelet filters are

h(z) = z⌊N/2⌋

(

1 + z−1

2

)N

,(4.3)

h̃(z) = 2z⌈Ñ/2⌉

(

1 + z−1

2

)Ñ M
∑

n=0

(

M + n
n

)

(−4)−n(z − 2 + z−1)n,(4.4)

where M = 1
2 (N + Ñ) − 1, ⌊·⌋ denotes the floor function, and ⌈·⌉ denotes the ceiling

function [11]. The corresponding highpass filters are g(z) = 1
2z

−1h̃(−z) and g̃(z) =
2zh(−z). The lowpass filter h is the decimation filter corresponding to the spline
discretization of order N . If the prediction operator can predict locally polynomial
signals, then vanishing moments in g are unnecessary, and Ñ should be 0 (or 1, if N
is odd) to minimize the support of g.

Setting N = 2, Ñ = 0 yields the hat filters

h(z) = z

(

1 + z−1

2

)2

= 1
4z + 1

2 + 1
4z

−1, g(z) = z−1,

h̃(z) = 2

0
∑

n=0

(−4)−n(z − 2 + z−1)n = 2, g̃(z) = − 1
2z

2 + z − 1
2 .

These lead to the same encoding and decoding operators as before in section 3.3:

Encoding dk = ↓(ek ∗ g) ⇔ dkn = ek2n−1,

Decoding ek = (↑ dk) ∗ g̃ ⇔
{

ek2n−1 = dkn,

ek2n = − 1
2 (dkn + dkn+1).

Section 6.1 will expand upon this example to construct spline schemes for N > 2.
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Remark 2. If h, h̃, g, and g̃ satisfy the perfect reconstruction conditions, then so
do the scaled and shifted filters

h′(z) = αz2jh(z), g′(z) = βz2kg(z),

h̃′(z) =
1

α
z−2j h̃(z), g̃′(z) =

1

β
z−2kg̃(z).

Notice that the detail encoding and decoding operators are not uniquely deter-
mined by h. Consider the filter h(z) = 1

8z+ 3
8 + 3

8z
−1 + 1

8z
−2. With the spline wavelet

approach with N = 3 and Ñ = 1, the filters g and g̃ are

g(z) = 1
4z + 3

4 − 3
4z

−1 − 1
4z

−2, g̃(z) = 1
4z

2 − 3
4z + 3

4 − 1
4z

−1.

Using (4.2), the filters are

g(z) = 3z−1 + z−2, g̃(z) = − 1
8z

2 + 3
8z − 3

8 + 1
8z

−1.

There is a lot of flexibility in designing the detail operators. Harten’s framework does
not even require that they are linear, only that G̃kGke

k = ek for all ek ∈ N (Dk−1
k ).

4.2. Diagonalizing the decimation operator. Following the “via primitive”
technique (section 3.3), our next step is to choose maps under which Dk−1

k becomes
pure downsampling.

Theorem 4.1. Suppose Dk−1
k : V k → V k−1 is any linear and surjective operator,

then there exists bijections Tk on V k and T̃k−1 on V k−1 such that

(4.5) T̃−1
k−1D

k−1
k Tk = ↓ .

For any such maps T̃k−1 and Tk, P
k
k−1 is a consistent prediction operator if and only

if T−1
k P k

k−1T̃k−1 is an interpolatory operator.

Proof. One way to construct Tk and T̃k−1 is to interpret Dk−1
k as a Jk−1 × Jk

matrix, and let Dk−1
k = UΣV ∗ be a singular value decomposition (SVD). Since Dk−1

k

is surjective, the singular values σ1, . . . , σJk−1
are all positive. Let S be the Jk−1×Jk−1

diagonal matrix Sii = σi, and let P be the Jk × Jk permutation matrix such that
S−1ΣP =

[

I
∣

∣ 0
]

P = ↓ . Then

Dk−1
k = US(S−1ΣP )P ∗V ∗ = US ↓ (V P )∗.

So a choice for the maps is Tk = V P and T̃k−1 = US.
For any interpolatory operator Qk

k−1, the prediction operator

(4.6) P k
k−1 = TkQ

k
k−1T̃

−1
k−1

is consistent: Dk
k−1TkQ

k
k−1T̃

−1
k−1 = T̃k−1 ↓Qk

k−1T̃
−1
k−1 = IV k−1 . Conversely, if P k

k−1 is

consistent, ↓ T−1
k P k

k−1T̃k−1 = T̃−1
k−1D

k−1
k P k

k−1T̃k−1 = IV k−1 . Thus P k
k−1 is a consistent

prediction operator if and only if T−1
k P k

k−1T̃k−1 is interpolatory.

Remark 3. Furthermore, if an SVD of Dk−1
k is available, then Ekv=[0|IJk−1×Jk−1

]V ∗v,
and Fkd = E∗

kd are valid detail operators.

Given H̃k, Gk, and G̃k such that H̃kD
k−1
k + G̃kGk = IV k , a practical choice for

the diagonalization maps is

(4.7) Tk =
[

H̃k G̃k

]

P ∗, T̃k−1 = IV k−1 ,
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where P is the permutation matrix in the proof of Theorem 4.1. Then prediction
takes the form P k

k−1v
k−1 = H̃kv

k−1 + G̃kw, where w may be any element of V k−1.
Moreover, (4.7) yields a strategy for correcting the consistency of a nonconsistent

prediction operator. Let P̂ k
k−1 : V k−1 → V k be any operator, then

(4.8) P k
k−1v

k−1 = H̃kv
k−1 + G̃kGkP̂

k
k−1v

k−1

is consistent and if P̂ k
k−1 is already consistent, then P k

k−1 = P̂ k
k−1. Such a prediction

operator may be efficiently implemented in lifting scheme form as in Figure 4.3:

Encoding

{

vk−1= Dk−1
k vk,

dk= Gkv
k −GkP̂

k
k−1v

k−1,
Decoding

{

d̃k= dk + GkP̂
k
k−1v

k−1,

vk= H̃kv
k−1 + G̃kd̃

k.

The maps Tk and T̃k−1 diagonalize Dk−1
k to the operation of pure downsampling.

In the cell-average and hat-based constructions, these maps are seen as a relationship
between the original signal vk−1 and its primitive v̊k−1:

vk−1
T̃−1
k−1−−−→ v̊k−1, v̊k

Tk−→ vk.

At least for spline discretizations, there are diagonalization maps such that T̃k = Tk.
However, T̃k and Tk need not be equal in general.

4.3. Prediction for convolution-based decimation. The preceding discus-
sion applies to constructions with any linear and surjective Dk

k−1. In the rest of our

construction we restrict to decimation of the form Dk
k−1v

k =↓(h ∗ vk), where h is an
FIR filter.

In both the cell-average and hat-based constructions, the relationship between vk

and v̊k is linear shift-invariant, which suggests diagonalization maps of the form

Tkv̊
k = a ∗ v̊k, T̃−1

k−1v
k−1 = b ∗ vk−1.

Moreover, from a design point of view, this is a convenient choice of maps since if
Qk

k−1 is shift-invariant, then so is P k
k−1.

Ignoring boundary issues for the moment, consider the scheme on the infinite
grid. Discrete consistency Dk−1

k P k
k−1 = IV k−1 can be written using (1.2) as

1
2

[

h(z)Z{P k
k−1v

k−1}(z) + h(−z)Z{P k
k−1v

k−1}(−z)
]

= vk−1(z2).

Consider P k
k−1v

k−1 = a ∗Qk
k−1(b ∗ vk−1), with a(z) = h(−z). Then

1
2

[

h(z)h(−z)Z{Qk
k−1(b ∗ vk−1)}(z) + h(−z)h(z)Z{Qk

k−1(b ∗ vk−1)}(−z)
]

= vk−1(z2)

h(z)h(−z) 1
2

[

Z{Qk
k−1(b ∗ vk−1)}(z) + Z{Qk

k−1(b ∗ vk−1)}(−z)
]

= vk−1(z2).

Let v̊k−1 = b ∗ vk−1, then since Qk
k−1 is interpolatory,

1
2

[

Z{Qk
k−1v̊

k−1}(z) + Z{Qk
k−1v̊

k−1}(−z)
]

= Z{↑↓(Qk
k−1v̊

k−1)}(z) = v̊k−1(z2).

Thus

h(z)h(−z)
[

b(z2)vk−1(z2)
]

= vk−1(z2) ⇒ b(z2) =
1

h(z)h(−z)
.
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Since h(z)h(−z) is even, b(z) is well defined by this expression. Therefore, for any
interpolatory operator Qk

k−1,

(4.9) P k
k−1v

k−1 = a ∗Qk
k−1(b ∗ vk−1)

is a consistent prediction operator with

a(z) = h(−z), b(z2) =
1

h(z)h(−z)
.

For finite-length signals, the consistency of the prediction operator (4.9) does not
hold near the boundaries. The boundaries can be corrected using (4.8).

Remark 4. If c satisfies c(z) = c(−z), the prediction operator P k
k−1v

k−1 = a ∗
Qk

k−1(b ∗ vk−1) with filters

b(z2) =
1

c(z)h(z)h(−z)
, a(z) = c(z)h(−z)

is also consistent. In particular, b and a may be rescaled with c(z) = κ.
Beware that b is typically an unstable filter. If h(z) has a zero at r, then b(z) has

a pole at r2. Depending on the rate of unstable growth and the signal length, a direct
implementation of (4.9) may yet be numerically tractable. Otherwise, (4.9) should be
considered conceptually and then implemented using other diagonalization maps (for
example, (4.7)).

This construction reproduces the cell-average and hat-based discretization strate-
gies in section 3.3. Let Ik be an interpolatory operator, and define Qk

k−1 by (Qk
k−1

vk−1)n = (Ik−1v
k−1)(xk

n). If h is the cell-average decimation filter h(z) = 1
2 + 1

2z
−1

and κ = 2k+1,

b(z2) =
1

κh(z)h(−z)
=

21−k

1 − z−2
⇒ b(z) =

21−k

1 − z−1
,

a(z) = κh(−z) = 2k(1 − z−1).

Convolution with b is cumulative summation, and convolution with a is backward
differencing. Define

ṽk−1
n = (b ∗ vk−1)n = 21−k

n
∑

m=1

vk−1
m ,

then the prediction operator is

(P k
k−1v

k−1)n = (a ∗Qk
k−1ṽ

k−1)n = 2k
[

(Qk
k−1ṽ

k−1)n − (Qk
k−1ṽ

k−1)n−1

]

= 2k
[

(Ik−1ṽ
k−1)(xk

n) − (Ik−1ṽ
k−1)(xk

n−1)
]

.

Compare this to the cell-average prediction described in section 3.3, which is

(P k
k−1v

k−1)n = 2k
[

(Ik−1v̊
k−1)(xk

n) − (Ik−1v̊
k−1)(xk

n−1)
]

, v̊k−1
n = 21−k

n
∑

m=1

vk−1
m .

Notice that ṽk−1 = b∗vk−1 has the same role as the primitive samples v̊k−1
n = f̊(xk−1

n ).
Section 4.4 generalizes the notion of primitive through this connection.
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For the hat-based prediction as in section 3.3, set h(z) = 1
4z + 1

2 + 1
4z

−1 and
κ = −4k+1:

b(z2) =
1

κh(z)h(−z)
=

41−kz−2

(1 − z−2)2
⇒ b(z) =

41−kz−1

(1 − z−1)2
,

a(z) = κh(−z) = 4k(z − 2 + z−1).

The interpolatory operator Qk
k−1 must be sufficiently regular to compensate for

applying the highpass filter a. For hat-based prediction, a ∗ Qk
k−1v̊

k−1 is the second

difference of Qk
k−1v̊

k−1, which has Dirac measures if Qk
k−1 is not smooth. One way to

make a smoother version of Qk
k−1 is by defining

(4.10) Q̃k
k−1v̊

k−1 = arg min
q:↓q=v̊k−1

∥

∥Qk
k−1v̊

k−1 − q
∥

∥

2

2
+ ‖λ · (d ∗ q)‖2

2 ,

where d is a finite difference filter and λn weights the amount of regularization around
point n. The minimization is equivalent to solving a sparse linear system.

Remark 5. There is no restriction that a prediction must be formulated in the
same way for all scales k. The filters a and b may depend on k.

4.4. Operators Dk and Rk. Knowing only the discrete operators Dk−1
k , P k

k−1,
Gk, and G̃k is sufficient for implementation. However, to complete Harten’s frame-
work, this section finds operators Dk and Rk consistent with the discrete operators.
In this section, complications at the boundaries are ignored by working on the infinite
grid.

Given a discrete signal g, define its delta sequence at resolution level k as

gδk(x)
def
=

∑

n∈Z

gn δ(x− xk
n), xk

n = 2−kn.

Suppose that h(z) has at least one root at z = −1 and is normalized as h(1) = 1.
Analogous to the scaling function in wavelet theory, define

(4.11) φ(x) = 2
∑

n

hn φ(2x− n).

This determines φ̂ up to a scale factor [17], which is chosen such that φ̂(0) = 1. Define
the discretization operator

(4.12) (Dkf)n = (φk ∗ f)(xk
n), φk(x) = 2kφ(2kx).

Now consider the reconstruction operator Rk. Let Ik be any interpolatory opera-
tor. Define the corresponding interpolatory operator (Qk

k−1v
k−1)n = (Ik−1v

k−1)(xk
n).

Section 4.3 defines the prediction operator as

(P k
k−1v

k−1)n =
(

a ∗Qk
k−1(b ∗ vk−1)

)

n
(4.13)

=
(

aδk ∗ Ik−1(b ∗ vk−1)
)

(xk
n),

where b(z2) = 1/
(

h(z)h(−z)
)

and a(z) = h(−z). Suppose that the reconstruction
operator has the form Rkv

k = ξk ∗ Ik(b ∗ vk), where ξk is a distribution. Then the
prediction operator is defined by the framework to be

(P k
k−1v

k−1)n = (DkRk−1v
k−1)n

=
(

φk ∗ ξk−1 ∗ Ik−1(p ∗ vk−1)
)

(xk
n).
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In order to agree with the construction of P k
k−1 in (4.13), ξk−1 is defined implicitly

by φk ∗ ξk−1 = aδk . Since h is FIR, φk has a finite degree of continuity, and hence
∣

∣ξ̂k−1(ω)
∣

∣ = |âδk(ω)| /|φ̂k(ω)| ≤ ‖a‖ℓ1 /|φ̂k(ω)| = O(|ω|p) for some finite p. Therefore,
ξk−1 is a tempered distribution.

Let w(z) = 1/b(z), then since w = ↓(h ∗ a) and φk−1 = hδk ∗ φk,

φk ∗ ξk−1 = aδk ⇒ hδk ∗ φk ∗ ξk−1 = (h ∗ a)δk ⇒ φk−1 ∗ ξk−1 = wδk−1
.

So ξk is also given by φk ∗ ξk = wδk . Define the reconstruction operator as

(4.14) Rkv
k = ξk ∗ Ik(b ∗ vk), φk ∗ ξk−1 = aδk .

For example, in the cell-average case, Rk should be Rkv
k = d

dxIk(b ∗ vk), with b(z) =

2−k(1 − z−1)−1 and ξk = −δ′ (such that ξk ∗ (·) = d
dx (·)).

This approach to the reconstruction operator provides a general notion of primi-
tive. If the primitive samples are v̊k = b ∗ vk, then

f̊k(xk
n) = v̊kn = (b ∗ vk)n = (bδk ∗ φk ∗ f)(xk

n),

(ξk ∗ f̊k)(xk
n) = (ξk ∗ bδk ∗ φk ∗ f)(xk

n) = (bδk ∗ wδk ∗ f)(xk
n) = f(xk

n),

which suggests defining a “generalized primitive” f̊k (see Figure 4.4) by

f̊k = bδk ∗ φk ∗ f, f = ξk ∗ f̊k.

In contrast to the primitive in the cell-average and hat-based formulations (section

3.3), the generalized primitive f̊k is a different function for each scale k. However, for
spline discretizations, section 6.1 will show that there is a single primitive independent
of k.

Theorem 4.2. The discretization and reconstruction operators defined in (4.12)
and (4.14) satisfy the consistency relationship, and (Dk) is nested. Furthermore, the

decimation operator Dk−1
k = Dk−1Rk and the prediction operator P k

k−1 = DkRk−1

are

Dk−1
k vk = ↓(h ∗ vk), P k

k−1v
k−1 = a ∗Qk

k−1(b ∗ vk−1),

where (Qk
k−1v

k−1)n = (Ik−1v
k−1)(xk

n).

Proof. For any vk, (DkRkv
k)n = (φk ∗ξk ∗Ikv̊k)(xk

n) = (wδk ∗Ikv̊k)(xk
n). Because

Ik is an interpolatory operator, (Ikv̊k)(xk
n) = v̊kn. Also noting that wδk is a delta

sequence, the convolution is equivalently written as the discrete convolution (w∗ v̊k)n.
Thus,

(DkRkv
k)n = (w ∗ v̊k)n = vkn.

So the consistency relationship is satisfied. Because φk−1 = hδk ∗ φk,

vk−1
n = (φk−1 ∗ f)(xk−1

n ) = (hδk ∗ φk ∗ f)(xk
2n) = ↓(h ∗ vk)n.

If Dkf = vk = 0, then Dk−1f = vk−1 = ↓ (h ∗ vk) = 0. Therefore, (Dk) is nested.
Furthermore, consistency and nestedness imply that

Dk−1
k vk = Dk−1RkDkf = Dk−1f = vk−1 = ↓(h ∗ vk).
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✛ ✲
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0 2−k

2k

φk

=

✛ ✲

❄

1

u

0 3×2−k

❄ ❄ ❄ ❄

Fig. 4.4. The cell-average primitive f̊ is related to f by convolution with the unit step f̊ =
bδk ∗ φk ∗ f = u ∗ f .

The prediction operator is

(DkRk−1v
k−1)n = (φk ∗ ξk−1 ∗ Ik−1v̊

k−1)(xk
n)

=
(

aδk ∗ Ik−1(b ∗ vk−1)
)

(xk
n)

=
(

a ∗Qk
k−1(b ∗ vk−1)

)

n
.

Remark 6. If c satisfies c(z) = c(−z), Theorem 4.2 also holds for filters

b(z2) =
1

c(z)h(z)h(−z)
, a(z) = c(z)h(−z).

Remark 7. Suppose that the interpolation Ik is linear, shift-invariant, and scale-
independent, then

(Ikv̊k)(x) =
∑

n

2kθ(2kx− n) v̊kn = (θk ∗ v̊kδk)(x), θk(x) = 2kθ(2kx),

where the associated function θ satisfies θ(0) = 1 and θ(n) = 0 for all nonzero integers
n ∈ Z\{0}. The reconstruction operator becomes Rkv

k = ξk ∗ θk ∗ bδk ∗ vkδk . Let

φ̃k = ξk ∗ θk ∗ bδk such that Rkv
k = φ̃k ∗ vk. Since φk ∗ ξk = wδk and w(z) = 1/b(z),

φk ∗ φ̃k = (φk ∗ ξk) ∗ θk ∗ bδk = (wδk ∗ bδk) ∗ θk = θk,

so φ̃k satisfies φk ∗ φ̃k = θk. Reconstruction reduces to the wavelet reconstruction

(Rkv
k)(x) =

∑

n

2kφ̃(2kx− n) vkn,

where the dual scaling function φ̃ satisfies φ ∗ φ̃ = θ.
As an example of Theorem 4.2, consider a cell-average ENO with h(z) = (1+z−1).

Then if κ = 2k, a(z) = 2k−1(1 − z−1) and b(z) = 2−k(1 − z−1)−1. The discretization
operator is

(Dkf)n = (φk ∗ f)(xk
n) =

∫ xk
n

xk
n−1

f(x) dx, φ(x) =

{

1 if 0 ≤ x < 1,
0 otherwise.

The primitive f̊ is related to f by

f̊(x) = (bδk ∗ φk ∗ f)(x) = (u ∗ f)(x) =

∫ x

0

f(y) dy.
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Since φk+1 ∗ ξk = aδk+1
,

ξ̂k(ω) =
âδk+1

(ω)

φ̂k+1(ω)
=

1 − exp(−iω2−k−1)
1
iω

(

1 − exp(−iω2−k−1)
) = iω.

That is, convolution with ξk is differentiation. Consistent with (3.4) in section 3.3,
the reconstruction operator is (Rkv

k)(x) = (ξk ∗ Ikv̊k)(x) = d
dx (Ikv̊k)(x), where

v̊kn = (b ∗ vk)n = f̊(xk
n).

5. Error control. An application of multiresolution decompositions is signal ap-
proximation. When the multiresolution transform is linear and orthogonal (or nearly
orthogonal), an effective strategy is retaining the M largest transform coefficients
and setting the rest to zero. This “M -term approximation” works, since the ℓ2 error
incurred by truncating a coefficient is proportional to its magnitude. However, for
nonorthogonal or nonlinear schemes, another strategy is necessary.

Rather than fixing the number of nonzero coefficients, Harten proposed [13] a
modified encoding procedure that produces a sparse representation m̂ with approxi-
mation error less than a specified maximum error.

Define the (hard) thresholding operator

tr(x, ǫ) =

{

0 if |x| ≤ ǫ,
x if |x| > ǫ.

Given vL and a sequence of tolerances (ǫk), the modified encoding algorithm is

(5.1)

for k = L, . . . , 1
vk−1 = Dk

k−1v
k

end

v̂0 = v0

for k = 1, . . . , L

d̃k = Gk(v
k − P k

k−1v̂
k−1)

d̂k = tr(d̃k, ǫk)

v̂k = P k
k−1v̂

k−1 + G̃kd̂
k

end

m̂ = (v̂0, d̂1, . . . , d̂L).

The thresholds (ǫk) control the error of the approximation. Larger values of ǫk lead
to sparser decompositions, but also larger error. Given a tolerance ǫ, thresholds (ǫk)
can be selected such that the error is bounded:

J
−1/p
L

∥

∥vL − v̂L
∥

∥

p
≤ ǫ,

where Jk is the length of vk and ‖·‖p denotes the usual ℓp norm.
Such error control has been developed for point-value, cell-average, and hat-based

discretizations with zero-padded boundary handling [5, 6]. For point-value discretiza-
tion, if ǫk = ǫ, then

(5.2) J
−1/p
L

∥

∥vL − v̂L
∥

∥

p
≤ ǫ for p = 1, 2,∞.
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For cell-average discretization, if ǫk = ǫ qL−k with 0 < q < 1, then

(5.3) J
−1/p
L

∥

∥vL − v̂L
∥

∥

p
≤

⎧

⎪

⎨

⎪

⎩

ǫ

1 − q
for p = 1,∞,

ǫ
√

1 − q2
for p = 2.

For hat-based discretization, if ǫk = ǫ qL−k with 0 < q ≤ 1
2 , then

(5.4) J
−1/p
L

∥

∥vL − v̂L
∥

∥

p
≤

⎧

⎨

⎩

ǫ

1 − 2q
if 0 < q < 1

2 ,

Lǫ if q = 1
2 ,

for p = 1, 2,∞.

See [5, 6] for proofs. Theorem 5.1 provides error control for general discretizations.
Theorem 5.1. Let Dk−1

k and Gk be linear operators from V k to V k−1, and H̃k

and G̃k be linear operators from V k−1 to V k satisfying H̃kD
k−1
k + G̃kGk = IV k , and

let P k
k−1 be any operator from V k−1 to V k satisfying Dk−1

k P k
k−1 = IVk−1 .

Let ‖·‖ be a norm, and let α, β be such that

‖H̃kv‖ ≤ α ‖v‖ and ‖G̃kv‖ ≤ β ‖v‖∞ for all v ∈ V k−1, k ≤ L.

If the thresholds (ǫk) in the modified encoding algorithm (5.1) satisfy ǫk = ǫ qL−k for

some q ∈ (0, α−1), then the reconstruction error is bounded:

∥

∥vL − v̂L
∥

∥ <
βǫ

1 − αq
.

Proof. First, observe that

vk − v̂k = (P k
k−1v

k−1 − P k
k−1v̂

k−1) + G̃k(d
k − d̂k).

The detail term expands to dk−d̂k = (dk−d̃k)+(d̃k−d̂k) = −Gk(P
k
k−1v

k−P k
k−1v̂

k−1)+

(d̃k − d̂k). Therefore,

vk − v̂k = (IV k − G̃kGk)(P
k
k−1v

k−1 − P k
k−1v̂

k−1) + G̃k(d̃
k − d̂k)

= H̃kD
k−1
k (P k

k−1v
k−1 − P k

k−1v̂
k−1) + G̃k(d̃

k − d̂k)

= H̃k(D
k−1
k P k

k−1v
k−1 −Dk−1

k P k
k−1v̂

k−1) + G̃k(d̃
k − d̂k)

= H̃k(v
k−1 − v̂k−1) + G̃k(d̃

k − d̂k).

Now by definitions of α, β, and d̂k = tr(d̃k, ǫk), it follows that

∥

∥vk − v̂k
∥

∥ ≤
∥

∥H̃k(v
k−1 − v̂k−1)

∥

∥+
∥

∥G̃k(d̃
k − d̂k)

∥

∥

≤ α
∥

∥vk−1 − v̂k−1
∥

∥+ βǫk.

Applying this bound recursively,

∥

∥vL − v̂L
∥

∥ ≤ β

L
∑

k=1

αL−kǫk = βǫ
1 − (αq)L

1 − αq
<

βǫ

1 − αq
.

Corollary 5.2. Let ‖v‖ be the scaled ℓp norm J
−1/p
k ‖v‖p. Let h̃ and g̃ be

wavelet filters as in section 4.1, and let h̃e
n = h̃2n and h̃o

n = h̃2n+1 be the even and

odd components of h̃, and similarly g̃e and g̃o be the even and odd components of g̃.
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Suppose that ⊛ is periodic convolution or, for convolution with other boundary

handling, suppose that the wavelet filters have the form h(z) = h0 + zho(z2) and

g(z) = z−1. Then H̃kv = h̃⊛↑v and G̃kv = g̃⊛↑v.
(i) If ⊛ is periodic convolution, then Theorem 5.1 applies with

(5.5)

α =

(

‖h̃e‖p1 + ‖h̃o‖p1
2

)1/p

, β =

(‖g̃e‖p1 + ‖g̃o‖p1
2

)1/p

if 1 ≤ p < ∞,

α = ‖h̃e‖1 ∨ ‖h̃o‖1, β = ‖g̃e‖1 ∨ ‖g̃o‖1 if p = ∞.

(ii) If ⊛ is zero-padded convolution and h(z) = h0 + zho(z2), g(z) = z−1, then

Theorem 5.1 applies with (5.5).
(iii) If ⊛ is convolution with symmetric or constant boundary extension and h(z) =

h0 + zho(z2), g(z) = z−1, then Theorem 5.1 applies with (5.5) for p = ∞.

Proof. (i) By Young’s inequality on the periodic grid,

J
−1/p
k

∥

∥h̃⊛↑v
∥

∥

p
= J

−1/p
k

[

∥

∥h̃e
⊛ v

∥

∥

p

p
+
∥

∥h̃o
⊛ v

∥

∥

p

p

]1/p

≤ J
−1/p
k

[

(∥

∥h̃e
∥

∥

p

1
+
∥

∥h̃o
∥

∥

p

1

)

‖v‖pp
]1/p

= αJ
−1/p
k−1 ‖v‖p .

(ii) and (iii) Let v ∈ V k, and let vext be its extension to the infinite grid, as determined
by the boundary-handling method, but with vext

n = 0 for |n| > supp h̃+ supp v. Then
(h̃⊛↑v)n = (h̃ ∗↑ ṽ)n for n = 0, . . . Jk − 1 and ‖v‖p = ‖vext‖p. By Young’s inequality
on the infinite grid,

J
−1/p
k

∥

∥h̃⊛↑v
∥

∥

p
≤ J

−1/p
k

∥

∥h̃ ∗↑vext
∥

∥

p

= J
−1/p
k

[

∥

∥h̃e ∗ vext
∥

∥

p

p
+
∥

∥h̃o ∗ vext
∥

∥

p

p

]1/p

≤ J
−1/p
k

[

(∥

∥h̃e
∥

∥

p

1
+
∥

∥h̃o
∥

∥

p

1

) ∥

∥vext
∥

∥

p

p

]1/p

= αJ
−1/p
k−1 ‖v‖p .

Similarly, β is such that
∥

∥g̃ ⊛ v
∥

∥ ≤ β ‖v‖ ≤ β ‖v‖∞.
Remark 8. For nonperiodic boundary handling, the requirement h(z) = h0 +

zho(z2) and g(z) = z−1 ensures a wavelet transform implementation with a single
update lifting step. For wavelets with more than one lifting step, it is generally not
true that H̃kv = h̃⊛↑v and G̃kv = g̃⊛↑v, though these formulas do hold for points
sufficient far from the boundaries.

However, presuming these boundary effects are small, the conclusions of Theorem
5.1 with (5.5) hold approximately for any wavelet and boundary handling.

For the point-value, cell-average, and hat-based discretizations, the wavelet filters
have the form h(z) = h0 +zho(z2) and g(z) = z−1. For both the cell-average and hat-
based discretizations with periodic or zero-padded boundary handling, α = 21−1/p

and β = 1, and Theorem 5.1 yields

J
−1/p
L

∥

∥vL − v̂L
∥

∥

p
≤ ǫ

1 − 21−1/pq
=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ǫ

1 − q
for p = 1,

ǫ

1 −
√

2q
for p = 2,

ǫ

1 − 2q
for p = ∞.
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For cell-average discretization, this bound agrees with (5.3) for p = 1 and is worse for
p = 2,∞. For hat-based discretization, it agrees with (5.4) for p = ∞ and is better
for p < ∞.

For point-value discretization, Theorem 5.1 is overly conservative with error bound
ǫ/(21/p−1 − q), which is much worse than (5.2). However, this case is extreme, as all
involved filters are one-tap.

6. Example constructions. In this section, two examples of Harten multireso-
lution schemes are constructed using the approach proposed in the previous sections.
The first is a family of spline discretization schemes, where cell-average discretization
is order N = 1 and hat-based discretization is N = 2. The second is a simple example
with nonspline decimation filters.

6.1. Spline discretizations. This section develops Harten schemes with spline
discretization. Let h(z) be the Nth-order spline decimation filter

h(z) = z⌊N/2⌋

(

1 + z−1

2

)N

,

and define Dk−1
k vk = ↓(h∗vk). As in section 4.3, the prediction operator is P k

k−1v
k−1 =

a ∗Qk
k−1(b ∗ vk−1) for any interpolatory operator Qk

k−1, with

b(z) =
1

z⌊N/2⌋(1 − z−1)N
, a(z) = z⌊N/2⌋(1 − z−1)N .

Choose Ñ such that M = 1
2 (N + Ñ)− 1 is integer, and define h̃, g, and g̃ as in (4.4),

h̃(z) = 2z⌈Ñ/2⌉

(

1 + z−1

2

)Ñ M
∑

n=0

(

M + n
n

)

(−4)−n(z − 2 + z−1)n,

g(z) = 1
2z

−1h̃(−z), g̃(z) = 2zh(−z).

The detail encoder operator is Gke
k = ↓(g ∗ ek), and the decoder is G̃kd

k = g̃ ∗ (↑dk).
At this point, all of the necessary operators for a discrete implementation of the
scheme are established.

Now consider the continuous operators Dk and Rk. The function φ(x) satisfying
dilation equation (4.11) is the B-spline

(6.1) φ(x) =
1

(N − 1)!

N
∑

n=0

(

N

n

)

(−1)n
[

(x +

⌊

N

2

⌋

− n)+
]N−1

.

The B-spline φ can be shown to satisfy the dilation equation in the Fourier domain.
Let τ = 0 if N is even and τ = 1 if N is odd. Its Fourier transform is φ̂(ω) =

e−iωτ/2( sin(ω/2)
ω/2 )N , so that

2
∑

n

hn
1
2 φ̂(ω/2)e−inω/2 = 2

⌈N/2⌉
∑

n=−⌊N/2⌋

2−N

(

N

n + ⌊N
2 ⌋

)

1
2e−iω(τ+2n)/4

(

sin(ω/4)

ω/4

)N

= e−iω(τ−2⌊N/2⌋)/4

(

N
∑

n=0

(

N

n

)

e−iωn/2

)

(

sin(ω/4)

ω/2

)N

= e−iωτ/2

(

sin(ω/2)

ω/2

)N

= φ̂(ω).
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As in section 4.4, define the discretization operator as (Dkf)n = (φk ∗ f)(xk
n). The

primitive f̊k is related to f by f̊k = bδk ∗ φk ∗ f . In the Fourier domain,

(6.2) b̂δk(ω)φ̂k(ω) =
e−iωτ/2k+1

(

sin(ω/2k+1)
ω/2k+1

)N

eiω(2⌊N/2⌋−N)/2k+1(2i sin(ω/2k+1))N
= 2kN (iω)−N .

Thus the primitive f̊k is related to f by an Nth-order integral with scale factor 2kN ,

f̊k(x) = 2kN
∫ x

0

∫ y1

0

· · ·
∫ yN−1

0

f(yN ) dyN · · · dy2 dy1.

Let v̊kn = f̊k(xk
n) be samples of f̊k. In the Fourier domain, ξk is

(6.3)
âδk+1

(ω)

φ̂k+1(ω)
=

eiω(2⌊N/2⌋−N)/2k+2

(2i sin(ω/2k+2))N

e−iωτ/2k+2

(

sin(ω/2k+2)
ω/2k+2

)N
= 2−kN (iω)N .

Convolution with ξk is Nth-order differentiation, with a scale factor 2−kN . Given an
interpolatory operator Ik, the reconstruction operator is

(Rkv
k)(x) =

(

ξk ∗ Ik(b ∗ vk)
)

(x) = 2−kN dN

dxN
(Ikv̊k)(x).

If b is scaled by 2kN and a by 2−kN , then the 2kN scale factor in (6.2) and (6.3)
cancels, yielding a primitive independent of k:

f̊(x) =

∫ x

0

∫ y1

0

· · ·
∫ yN−1

0

f(yN ) dyN · · · dy2 dy1,

(Rkv
k)(x) =

dN

dxN
(Ikv̊k)(x), v̊kn = f̊(xk

n).

Since the primitive f̊ is related to f by Nth-order integration, predicting a polynomial
of degree K requires interpolation, with an order of at least K + N .

To control regularity, Ikv̊k−1 should be at least N times weakly differentiable.
An ENO interpolant has a weak first derivative, so Ik = IENO

k works directly for the
point-value N = 0 and the cell-average N = 1 cases. In the hat-based case N = 2, the
second derivative of an ENO interpolant contains Dirac measures. Aràndiga, Donat,
and Harten [6] control the manifestation of Dirac measures in their hat-based scheme
using a careful subcell-resolution scheme.

Another solution is to follow PENO with a smoothing step (4.10). This modifica-
tion controls the regularity without losing the prediction’s edge-adaptive behavior, as
demonstrated in Figure 6.1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2974 PASCAL GETREUER AND FRANÇOIS G. MEYER

Input signal

Coarsened signal

Prediction with spline 4.4 wavelet

Prediction with 4th-order spline ENO

Fig. 6.1. A piecewise-regular signal is first coarsened with 4th-order spline decimation, and
then prediction with the spline 4.4 wavelet and 4th-order spline ENO both attempt to recover the
original. ENO interpolation is followed by (4.10) to control regularity.

The hierarchical stencil selection method (described in section 3.1) has the prob-

lem that it may select singularity-crossing stencils for discontinuities in f̊ ′′ and higher
derivatives [5]. Since a jump becomes a discontinuity in f̊ (N), jump discontinuity in
f is not correctly handled for N ≥ 2. Nonhierarchical selection does not have this
problem, so it is the better method for N ≥ 2.

6.2. A nonspline scheme. Harten’s multiresolution framework generalizes
wavelets, including those with nonspline lowpass filters. This section constructs a
simple Harten multiresolution scheme based on piecewise polyharmonic (PPH) inter-
polation and the Cohen–Daubechies–Feauveau 9/7 (CDF 9/7) wavelet.

Define the linear/cubic PPH interpolatory operator

(PPPHv)2n+1 =
vn+1 + vn

2
− 1

4

(Δ2vn+1Δ
2vn)+

Δ2vn+1 + Δ2vn
,

where Δ2vn = vn+1 − 2vn + vn−1. Amat et al. [3, 4] considered it as the prediction
operator in point-value discretization schemes and have shown its nice properties and
potential in nonlinear approximation.

Let H, G, H̃, and G̃ be the decomposition and reconstruction operators for the
CDF 9/7 wavelet, and let Dk−1

k = H be the decimation operator. As in (4.8), a
consistent prediction based on PPPH is

(6.4) P k
k−1v

k−1 = H̃vk−1 + G̃GPPPHvk−1.

The CDF 9/7 PPH scheme is applied to nonlinear approximation in Figure 6.2.
An image is sparsely decomposed with 3% nonzero coefficients using the modified
encoding algorithm (section 5) and then reconstructed. The same is done with the
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Original

PV PPH Reconstruction (PSNR 27.4) CDF 9/7 PPH Reconstruction (PSNR 29.5)

Fig. 6.2. A nonlinear approximation of Goldhill using 3% nonzero coefficients. Left: Re-
construction using point-value discretization and PPH interpolation. Right: Reconstruction using
CDF 9/7 wavelet discretization and (6.4).

PPH scheme based on point-value discretization (PV PPH). Reconstruction quality is
measured in terms of peak signal-to-noise (PSNR). Since the CDF 9/7 PPH scheme
applies a smoothing filter before decimating, it can suppress aliasing artifacts and
handle texture better.

7. Conclusion. This paper develops a new approach to the construction of
Harten multiresolution schemes, where the decimation operator is based on an ar-
bitrary FIR decimation filter h.

• It is possible to design all of the operators (Dk−1
k , P k

k−1, Gk, G̃k) necessary
for implementing a nonredundant decomposition from h without ever defining
Dk or Rk (section 4.3, section 4.1).
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• Dk and Rk can be constructed (section 4.4) such that they are consistent
with the decimation and prediction operators defined in section 4.3.

• The construction of Rk “via primitive function” [6, 14], and the notion of
primitive generalizes to discretizations with any h (section 4.4).

• Schemes under this construction may be applied to nonlinear approximation
using the error-control strategy developed in section 5.

• As a special case, the construction yields a family of Harten schemes with
spline discretizations (section 6.1), where the point-value, cell-average, and
hat-based discretizations are the first three members.

• It is also possible to construct Harten schemes with nonspline discretizations,
as demonstrated by the example in section 6.2.

The presented construction expands the choice of discretization to any discretiza-
tion with an FIR decimation filter. New Harten multiresolution schemes are possible
using smoother and nonspline decimation filters.
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