Full text

 

Artem Dementyev, Pascal Getreuer, Dimitri Kanevsky, Malcolm Slaney, and Richard F. Lyon. “VHP: Vibrotactile Haptics Platform for On-body Applications.” In The 34th Annual ACM Symposium on User Interface Software and Technology pp. 598–612. 2021.

Article permalink: https://doi.org/10.1145/3472749.3474772

@inproceedings{dementyev2021vhp,
  title={{VHP}: Vibrotactile Haptics Platform for On-body Applications},
  author={Dementyev, Artem and Getreuer, Pascal and Kanevsky, Dimitri and
          Slaney, Malcolm and Lyon, Richard F},
  booktitle={The 34th Annual ACM Symposium on
             User Interface Software and Technology},
  pages={598--612},
  year={2021}
}

Abstract

Wearable vibrotactile devices have many potential applications, including sensory substitution for accessibility and notifications. Currently, vibrotactile experimentation is done using large lab setups. However, most practical applications require standalone on-body devices and integration into small form factors. Such integration is time-consuming and requires expertise.

With a goal to democratize wearable haptics we introduce VHP, a vibrotactile haptics platform. It includes a low-power miniature electronics board that can drive up to 12 independent channels of haptic signals with arbitrary waveforms at a 2 kHz sampling rate. The platform can drive vibrotactile actuators including linear resonant actuators and voice coils. The control hardware is battery-powered and programmable, and has multiple input options, including serial and Bluetooth, as well as the ability to synthesize haptic signals internally. We developed current-based loading sensing, thus allowing for unique features such as actuator auto-classification, and skin-contact quality sensing. Our technical evaluations showed that the system met all our initial design criteria and is an improvement over prior methods as it allows all-day wear, has low latency, has battery life between 3 and 25 hours, and can run 12 actuators simultaneously.

We demonstrate unique applications that would be time-consuming to develop without the VHP platform. We show that VHP can be used as bracelet, sleeve and phone-case form factors. The bracelet was programmed with an audio-to-tactile interface and was successfully worn for multiple days over months by developers. To facilitate more use of this platform, we open-source our design and plan to make the hardware widely available. We hope this work will motivate the use and study of vibrotactile all-day wearable devices.

Copyright © 2021 by the Association for Computing Machinery, Inc. (ACM). Permission to make digital or hard copies of portions of this work for personal or classroom use is granted without fee provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page in print or the first screen in digital media. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.

To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Send written requests for republication to ACM Publications, Copyright & Permissions at the address above or fax +1 (212) 869-0481 or email permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.